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1. INTRODUCTION

Since the visual range is limited in the underwater 

environment,  manned and unmanned underwater 

vehicles are inevitably controlled based on high-precision 

navigation information. Since it is impossible to receive 

GPS signals underwater, navigation is performed based 

on an Inertial Navigation System (INS) using an Inertial 

Measurement Unit (IMU). The performance of INS depends 

on the performance of the gyro and accelerometer, the 

inertial sensors that make up the IMU. When using a high-

performance inertial sensor, accurate navigation can be 

performed with a single INS alone. However, navigation 
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errors gradually increase over time due to INS-based 

navigation calculation mechanism. In particular, when 

performing underwater navigation for a longer period of 

time than 24 hours, a single INS-based navigation causes 

serious problems in the control and guidance of underwater 

vehicles. In general, a complex navigation system using 

auxiliary sensors is used to address such problems (Farrell 

& Barth 1999, Kinsey et al. 2006).

The auxiliary sensors used in underwater environments 

include depth gauge and speedometer, and the speedometer 

includes the Doppler Velocity Log (DVL), Electromagnetic-

Log (EM-Log), and Propeller Log (Tal et al. 2017). The 

vertical axis position error and velocity error are primarily 

corrected through the Vertical Channel Damping (VCD) 

using a depth gauge (Seo et al. 2004). Then, a speedometer 

is  used to drive the f i l ter  in order to estimate the 

horizontal axis navigation error and sensor error. Among 

the speedometers used here, the DVL uses ultrasound to 
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provide the ground speed of the vehicle’s body coordinate 

system, thus providing the most accurate integrated 

navigation, but it has disadvantages because it cannot be 

used when the distance between the vehicle and the ground 

is far or when the vehicle is operating at high speeds. On the 

other hand, EM-Log provides log speed or speed through 

water by measuring the forward direction speed through 

the voltage difference generated by the sensor according 

to the flow velocity (Dmitriev et al. 2012). Therefore, when 

there is no sea current, it obtains the accurate forward 

direction speed of the vehicle and estimates the navigation 

error through filter operation using the measured value 

in order to suppress the divergence of INS navigation 

error. However, in the case of sea current, this will cause 

additional errors through filter operation. To solve this 

problem, a filter is used that adds a state variable that 

estimates the sea current through sea current modeling. If 

the model is similar to the actual sea current, the filter can 

estimate the sea current in the observable direction, but it is 

a virtually impossible assumption to model the sea current, 

which changes according to time, place, and weather, 

synchronized to the environment. Therefore, incorrect 

sea currents are estimated through filters using the wrong 

model, which causes the navigation error to increase even 

more than in the case of a single INS.

This study proposes a method that uses an INS/EM-

Log integrated navigation filter which uses an Interacting 

Multiple Model (IMM) filter (Bar-Shalom et al. 2005, Cho & 

Kim 2008). The IMM subfilters are composed on the basis 

of multiple models of sea current, and using the residual 

and residual covariance of each subfilter, various types of 

sea currents can be properly estimated through the mixing 

of subfilters. This study verified the performance of the 

proposed filter by performing Monte-Carlo simulations 

based on Matlab and analyzing the results.

This paper is organized as follows. Chapter 2 describes 

the principle and problems of EM-Log and sea current 

models from previous studies, while Chapter 3 designs the 

IMM filter-based INS/EM-Log integrated navigation filter. 

Chapter 4 verifies the performance of the proposed filter 

through simulation analysis, and the conclusions are made 

in the final chapter.

2. EM-LOG AND CURRENT MODEL

This chapter examines the principle and problems of 

EM-Log used as an auxiliary sensor for the navigation of 

underwater vehicles, and analyzes the sea current model 

which needs to be considered based on data from previous 

studies.

2.1 EM-Log

The EM-Log is a sensor that measures the relative speed of 

the underwater vehicle with respect to the seawater using the 

law of electromagnetic induction. According to Faraday's law, 

the induced electromotive force generated by the movement 

of the vehicle is proportional to the movement speed of the 

vehicle with respect to the sea water.
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Here,   is the magnitude of the induced electromotive force, B  is the magnitude of the magnetic 
flux, B  is the intensity of the magnetic field, and l  is the height of the magnetic field cross-section. 
In addition, b

xV and CV  indicate the speed of the sea current flowing in the same direction as the 
forward direction movement speed of the vehicle, respectively.  

If there is no sea current, b
xV  can be calculated by dividing the induced electromotive force 

generated from EM-Log by Bl. However, since sea current is always present in actual environment, 
the information output through EM-Log becomes the log speed or speed through water. Since the 
speed calculated by INS is the ground speed, a corresponding difference between the EM-Log 
output speed and sea current occurs, and a correct sea current model is required for the filter design 
considering this matter. 
 
2.2 Sea Current Model 
 

Sea current consists of sea current and ocean current. Sea current is the flow of seawater 
created by the gravitational pull of the moon and the sun, and the speed and direction are 
determined according to time and location. On the other hand, the ocean current is difficult to 
predict as it is the flow of seawater created by the surface water moved by the frictional force 
against wind and the deep-sea water moved by the difference of temperature and salinity. 

Methods for predicting sea current based on measured information and advance information 
include ACDIRC, CH3D, and ROMS, but actual implementation is practically difficult. This 
paper uses the first-order Markov type sea current model proposed by Dmitriev et al. (2012). 
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Here, CT  is a time constant of the correlation interval of the sea current speed, t  is the data 
generation time interval, C  is the Root Mean Square of the sea current speed, and Cw  is the white 
noise with standard normal distribution. 

Fig. 1 shows an example of sea current generation. Case 1 is set to 2CT  [hr], 0.5C 
[m/s], while Case 2 is set to 20CT  [hr], 0.05C  [m/s]. In other words, Case 1 is the case in 
which the size and direction of the sea current speed changes frequently due to the influence of the 
ocean current rather than the sea current in a short period of time, while Case 2 is the case where 
the change of sea current speed is not large. However, it is practically impossible to set parameter 
values that accurately predict sea current in a real-world environment that varies depending on the 
location, time, and weather. 
 
3. IMM-BASED INS/EM-LOG INTEGRATED NAVIGATION FILTER 

 
The purpose of this paper is to design an integrated navigation filter that corrects INS error 

using EM-Log measurements. However, as described above, the error may increase if the sea 
current included in the EM-Log measurements is not properly compensated. Therefore, a filter 
should be designed to compensate by adding the sea current to the state variable of the filter. In this 
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where, Tc is a time constant of the correlation interval of the 

sea current speed, ∆t is the data generation time interval, σ c 
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is the Root Mean Square of the sea current speed, and wc is 

the white noise with standard normal distribution.

Fig. 1 shows an example of sea current generation. Case 1 

is set to Tc=2[hr], σ c=0.5[m/s], while Case 2 is set to Tc=20[hr], 

σ c=0.05[m/s]. In other words, Case 1 is the case in which 

the size and direction of the sea current speed changes 

frequently due to the influence of the ocean current rather 

than the sea current in a short period of time, while Case 

2 is the case where the change of sea current speed is not 

large. However, it is practically impossible to set parameter 

values that accurately predict sea current in a real-world 

environment that varies depending on the location, time, 

and weather.

3. IMM-BASED INS/EM-LOG INTEGRATED 
NAVIGATION FILTER

The purpose of this paper is to design an integrated 

navigation filter that corrects INS error using EM-Log 

measurements. However, as described above, the error 

may increase if the sea current included in the EM-Log 

measurements is not properly compensated. Therefore, 

a filter should be designed to compensate by adding the 

sea current to the state variable of the filter. In this case, 

the first-order Markov model shown in (2) can be used 

for the sea current model, but if the parameters included 

in this model are not correctly set, the sea current cannot 

be properly estimated, which makes the results of the 

integrated navigation worse that the results of the single 

INS. Considering these problems, this study sets a sea 

current model with two different parameters, and based on 

this, uses the IMM filter to configure INS/EM-Log integrated 

navigation filter as shown in Fig. 2.

3.1 INS time propagation

As shown in Fig. 2, the time propagation of the navi-

gation information is performed in two independent 

INS blocks using the output of IMU and depth gauge. 

First,  VCD is performed to correct the vertical axis 

velocity and position using the depth gauge (Seo et al. 

2004). Then, the time propagation of the state variable 
[ ]T

N Ex L l v v φ θ ψ=  is performed, which is com-

posed of the horizontal axis position, velocity, and attitude 

(Farrell & Barth 1999). In this state variable, L and l are 
the latitude and longitude, [ ]n T

N EV v v=  is the north/east 

direction velocity, and [ ]Tφ θ ψ  is the Euler angle. Then, 

time prop-agation is performed by using the estimate of sea 
current [ ]C C C T

N EV v v=  in the north/east direction in the time 

propagation Eq. (3) derived from Eq. (2).
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where, [ ]n T
N E Dϕ φ φ φ=  is the attitude error expressed 

in the navigation coordinate system, and [ ]T
x y z∇ ∇ ∇  

and [ ]T
x y zε ε ε  are the accelerometer bias and gyro bias, 

Fig. 1.  An example of current generation. Fig. 2.  Structure of INS/EM-Log integrated navigation based on the IMM filter.
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respectively.

The Jacobian matrix is configured as shown in Eq. (5).
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where, 13 ( )INSF t  is a term based on the 13th order INS error model 

excluding the vertical axis position error and velocity error, in 

reference to (Seo et al. 2006). And FEM-Log is shown in Eq. (7).
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Here, (c)
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After updating the measurements of the error state variable and the error covariance matrix 
using the Jacobian matrix and measurement matrix shown in Eqs. (5) and (9), the results are used 
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using the Jacobian matrix and measurement matrix shown in Eqs. (5) and (9), the results are used 
to correct the errors. As shown in Fig. 2, INS/EM-Log measurement updates based on the sea 
current model set with two different parameters are independently performed. 
 
3.3 IMM Mixing 
 

After updating the measurements, the error-compensated state variable ( ˆix ) and the error 
covariance matrix ( iP ) are outputted from two models, respectively. In the process of updating the 
measurements for each model, the measurement residual ( ir ) and residual covariance matrix ( iC ) 
are formed as shown in Eqs. (11) and (12). 

(1)
(1:2)

ˆ ˆ ˆ( )b n C
i n i i EM Logr C V V V    %                                                     (11) 

T
i i i iC H P H R                                                                        (12) 

Here, {1,2}i . 

V
~

EM−Log

� (8)

where, (c)
(a:b)

b
nC  is a matrix configured with row c and column a 

: b of matrix b
nC .

Based on this, the measurement matrix can be configured 

as shown in Eq. (9).

	

Here, 13 ( )INSF t  is a term based on the 13th order INS error model excluding the vertical axis position 
error and velocity error, in reference to (Seo et al. 2006). And EM LogF   is shown in Eq. (7). 
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After updating the measurements of the error state variable and the error covariance matrix 
using the Jacobian matrix and measurement matrix shown in Eqs. (5) and (9), the results are used 
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Here, 13 ( )INSF t  is a term based on the 13th order INS error model excluding the vertical axis position 
error and velocity error, in reference to (Seo et al. 2006). And EM LogF   is shown in Eq. (7). 
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Here, (c)
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After updating the measurements of the error state variable and the error covariance matrix 
using the Jacobian matrix and measurement matrix shown in Eqs. (5) and (9), the results are used 
to correct the errors. As shown in Fig. 2, INS/EM-Log measurement updates based on the sea 
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Here, (c)
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Based on this, the measurement matrix can be configured as shown in Eq. (9). 
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After updating the measurements of the error state variable and the error covariance matrix 
using the Jacobian matrix and measurement matrix shown in Eqs. (5) and (9), the results are used 
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Here, 13 ( )INSF t  is a term based on the 13th order INS error model excluding the vertical axis position 
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Here, (c)
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In terms of updating the measurements every second, the process noise covariance matrix 
corresponding to the sea current speed is configured as shown in Eq. (10) based on Eq. (2). 
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After updating the measurements of the error state variable and the error covariance matrix 
using the Jacobian matrix and measurement matrix shown in Eqs. (5) and (9), the results are used 
to correct the errors. As shown in Fig. 2, INS/EM-Log measurement updates based on the sea 
current model set with two different parameters are independently performed. 
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In order to mix the results of both models, first assume that the continuous residuals of the 
two models have a standard normal distribution, and calculate the likelihood ratio as shown in Eq. 
(13) (Cho & Kim 2008). 
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Based on this, update the Mode probability as follows. Mode probability is a probability that 
indicates which of the two models is more reliable in the process of updating the current 
measurement value. 
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Here, n  is calculated as shown in Eq. (15). 
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Here, M is the Markov chain transition matrix and its component abm  is the probability of being 
converted from model a to model b. This matrix is configured in advance at the early stage of 
operating the filter. And the Mode probability initial value is set to [0.5 0.5]T . 

Using the updated Mode probability, calculate the Mixing probability to mix the outputs of 
the two models as shown in Eq. (16). 
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Using the Mixing probability, to converge the outputs of the two models and the sea current 
information are mixed as shown in Eqs. (17-20). 
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where, M is the Markov chain transition matrix and its 

component mab is the probability of being converted from 

model a to model b. This matrix is configured in advance 

at the early stage of operating the filter. And the Mode 
probability initial value is set to [0.5 0.5]T .

Using the updated Mode probability, calculate the Mixing 

probability to mix the outputs of the two models as shown 

in Eq. (16).
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The mixed state variables and the error covariance matrix are redistributed to each model, 
where these values replace the state variable and the error covariance matrix of each model. The 
final value of IMM filter is as shown in Eq. (21). 
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INS/EM-Log integrated navigation and the IMM-based INS/EM-Log integrated navigation was 
analyzed after implementing each method. The Monte-Carlo analysis was performed after 
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The two cases for simulation are shown in Fig. 1, where Case 1 is set to 2CT  [hr], 
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This study performed a simulation to verify the per-

formance of the proposed IMM-based INS/EM-Log 

integrated underwater navigation filter. The specifications of 

the sensors used for the simulation are summarized in Table 

1. The sensor data output frequency of the IMU was set to 

100 Hz, and the data output frequency of EM-Log and depth 

gauge was set to 1 Hz. Therefore, the time propagation is 

driven at 100 Hz and the measurement update is at 1 Hz.

The simulation first drives an initial precision alignment 

filter through zero velocity correction for 15 minutes. Then 

performs INS/GPS integrated navigation on the surface 

for the next 6 minutes. At this time, the trajectory is linear, 

accelerating for 20 seconds and then operates at a constant 

velocity. Then, INS/EM-Log integrated navigation is 

performed for the next 5 hours. The trajectory is set in two 

ways as shown in Fig. 3. The performance of the single EKF-

based INS/EM-Log integrated navigation and the IMM-

based INS/EM-Log integrated navigation was analyzed after 

implementing each method. The Monte-Carlo analysis was 

performed after implementing 10 simulations. The Root 

Mean Square Error (RMSE) of the location and sea current 

estimate was printed out as pictures for analysis.

The two cases for simulation are shown in Fig. 1, where 

Case 1 is set to Tc=2[hr], σ c=0.5[m/s], and Case 2 is set to 

Tc=20[hr], σ c=0.05[m/s]. The initial values for the IMM filter 

are set as follows.

• Markov chain transition matrix: 
0.9 0.1
0.1 0.9

M  
=  
 

• Model 1: Tc
1 = 0.2[hr], σ c

1 = 5[m/s]

• Model 2: Tc
2 = 200[hr], σ c

2 = 0.005[m/s]

Model 1 is modeled as a case where the sea current changes 

more rapidly than Case 1, and Model 2 is a case where the 

sea current changes more slowly than Case 2. Through this, 

the IMM filter is expected to estimate various sea currents.

First, the simulation results performed in trajectory 1 are 

shown in Figs. 4 and 5, respectively. Fig. 4 is the case where 

the sea current is set to Case 1, and Fig. 5 is the case where 

the sea current is set to Case 2. The RMSE of the location 

and sea current estimate after conducting ten simulations 

are shown, where the blue dotted line in each figure is the 

simulation results based on the single EKF (EKF-C1) set as 

the parameter in Case 1, and the green dotted line is the 

simulation results based on the single EKF (EKF-C2) set as 

the parameter in Case 2. The red solid line is the IMM filter-

based simulation result. In addition, the thick gray solid 

lines in each figure (a) are the results of performing only 

VCD using INS as the depth gauge, indicating the position 

error when EM-log is not used (No-Aiding). In this case, the 

position error has a Schuler cycle of 84.4 minutes, and the 

(a)

Fig. 3.  Simulation trajectory. (a) trajectory 1 (b) trajectory 2

(b)

Table 1.  Spec. of sensors.

Sensor Error Spec.
Accelerometer Bias repeatability 0.03 mg
Gyro Bias repeatability 0.001 deg/hr
EM-Log Noise 0.1% (3σ)
Depth gauge Noise 0.5 m
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error gradually increases over time. Since it is a trajectory 

sailing in the north direction, only the sea current in the 

north direction is observed and estimated, and the sea 

current in the east direction is not observed and cannot be 

estimated. However, since the EM-Log output contains only 

the sea current in the north direction, the sea current in the 

east direction does not affect the navigation performance.

In terms of Fig. 4, the actual sea current is rapidly changing 

as shown in the left picture of Fig. 1, where the EKF-C1 and 

IMM filter have a relatively small RMSE and estimate the sea 

current in the north direction. The position estimation error 

due to this effect is reduced when compared to No-Aiding, 

but the effect is not significant. However, EKF-C2 does 

not estimate the sea current, and as a result, the position 

estimation error diverges greatly.

In terms of Fig. 5, the actual sea current is changing very 

slowly as shown in the right picture of Fig. 1, where EKF-C2 

estimates and compensates the sea current in the north 

direction very accurately, so that the position estimation 

error falls to almost half of No-Aiding. On the other 

hand, EKF-C1 is not as accurate as EKF-C2 but shows an 

estimation performance similar to Case 1. In the case of the 

IMM filter, it estimates the sea current at levels between 

EKF-C1 and EKF-C2, and shows a similar performance for 

position estimation as well.

Next, the simulation results performed in trajectory 2 

are shown in Figs. 6 and 7, respectively. Fig. 6 is the case 

where the sea current is set to Case 1, and Fig. 7 is the case 

where the sea current is set to Case 2. When the underwater 

vehicle sails to the north and south, the sea current in the 

north direction is observed, and when it sails to the east 

and west, the sea current in the east direction is observed 

and estimated. The simulation results in trajectory 2 are 

characterized by the change of sea current observability 

according to the sailing direction, and the performance is 

similar to that of trajectory 1.

The following conclusions are drawn from the simulation 

results.

(a)

Fig. 4.  Simulation results (trajectoroy 1, Case 1). (a) RMSE of position estimates (b) RMSE of current estimates

(b)

(a)

Fig. 5.  Simulation results (trajectory 1, Case 2). (a) RMSE of position estimates (b) RMSE of current estimates

(b)
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• It is possible to estimate the sea current velocity in ac-

cordance with the direction of EM-Log sensing axis.

• EKF-C1: In terms of EKF-C1, modeled with a relatively 

large σ c and small T c, it provides a relatively good estimate 

of the sea current regardless of the degree of sea current 

change, but the resulting accuracy of position estimation 

is slightly improved in trajectory 1 compared to No-Aiding, 

and in trajectory 2 where the directions change, it improves 

slightly more compared to trajectory 1.

• EKF-C2: In terms of EKF-C2, modeled with small σ c 

and large T c, it estimates the sea current very accurately in 

environments where the sea current changes slowly as in 

Case 2, but in environments where the sea current changes 

rapidly as in Case 1, the sea current estimation error sig-

nificantly increases, and the position estimation error also 

diverges accordingly.

• IMM filter: In terms of the IMM filter, which consists of 

Model 1 which is modeled with a small σ c and large T c, and 

Model 2 which is modeled with a large σ c and small T c, 

the performance is somewhat lower than that estimated 

by EKF-C2 in Case 2 environment, but provides a stable 

solution regardless of sea current change.

• Since it is impossible to know the degree of sea current 

change in actual environment, using a single filter based on 

an inaccurate model may lead to an integrated navigation 

result worse than that of No-Aiding. On the other hand, the 

IMM filter provides an INS/EM-Log integrated navigation 

solution which always shows better performance than No-

Aiding.

5. CONCLUSIONS

This paper proposes an IMM-based filter for INS/EM-

Log integrated navigation for underwater vehicles. Since 

EM-Log provides the log speed as a measured value, if the 

sea current is not correctly estimated and compensated, the 

integrated navigation will cause a rather large estimation 

(a)

Fig. 6.  Simulation results (trajectoroy 2, Case 1). (a) RMSE of position estimates (b) RMSE of current estimates

(b)

(a)

Fig. 7.  Simulation results (trajectoroy 2, Case 2). (a) RMSE of position estimates (b) RMSE of current estimates

(b)
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error. This study modeled the sea current with the first-

order Markov. The parameters used in this model are used 

in the Jacobian matrix and the process noise covariance 

matrix for the time propagation and measurement update 

of the state variables corresponding to the sea current. 

Therefore, a single filter using a wrong parameter estimates 

an incorrect sea current, which results in a large position 

estimation error. Considering these problems, this study 

designed a filter that integrates INS and EM-Log on 

the basis of the IMM filter. Two models using different 

parameters were mixed to improve the performance of 

estimating the sea current and location. A Monte-Carlo 

simulation was performed to verify the performance of the 

proposed filter. The simulation results showed that the 

proposed IMM-based INS/EM-Log integrated navigation 

system can properly estimate the sea current regardless of 

the sea current change, and also confirmed that it provides 

navigation information with improved position estimation 

accuracy. This is expected to improve the navigation 

performance of underwater vehicles, and enable the stable 

operations of underwater vehicles based on the improved 

navigation information.
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