• Title/Summary/Keyword: DSP Processor Array

Search Result 48, Processing Time 0.02 seconds

Design and Implementation of Adaptive Beam-forming System for Wi-Fi Systems (무선랜 시스템을 위한 적응형 빔포밍 시스템의 설계 및 구현)

  • Oh, Joohyeon;Gwag, Gyounghun;Oh, Youngseok;Cho, Sungmin;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2109-2116
    • /
    • 2014
  • This paper presents the implementation and design of the advanced WI-FI systems with beam-forming antenna that radiate their power to the direction of user equipment to improve the overall throughput, contrast to the general WI-FI systems equipped with omni-antenna. The system consists of patch array antenna, DSP, FPGA, and Qualcomm's commercial chip. The beam-forming system on the FPGA utilizes the packet information from Qualcomm's commercial chip to control the phase shifters and attenuators of the patch array antenna. The PCI express interface has been used to maximize the communication speed between DSP and FPGA. The directions of arrival of users are managed using the database, and each user is distinguished by the MAC address given from the packet information. When the system wants to transmit a packet to one user, it forms beams to the direction of arrival of the corresponding user stored in the database to maximize the throughput. Directions of arrival of users are estimated using the received preamble in the packet to make its SINR as high as possible. The proposed beam-forming system was implemented using an FPGA and Qualcommm's commercial chip together. The implemented system showed considerable throughput improvement over the existing general AP system with omni-directional antenna in the multi-user communication environment.

Implementation of an LFM-FSK Transceiver for Automotive Radar

  • Yoo, HyunGi;Park, MyoungYeol;Kim, YoungSu;Ahn, SangChul;Bien, Franklin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.

Optimization of Pipelined Discrete Wavelet Packet Transform Based on an Efficient Transpose Form and an Advanced Functional Sharing Technique

  • Nguyen, Hung-Ngoc;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.374-385
    • /
    • 2019
  • This paper presents an optimal implementation of a Daubechies-based pipelined discrete wavelet packet transform (DWPT) processor using finite impulse response (FIR) filter banks. The feed-forward pipelined (FFP) architecture is exploited for implementation of the DWPT on the field-programmable gate array (FPGA). The proposed DWPT is based on an efficient transpose form structure, thereby reducing its computational complexity by half of the system. Moreover, the efficiency of the design is further improved by using a canonical-signed digit-based binary expression (CSDBE) and advanced functional sharing (AFS) methods. In this work, the AFS technique is proposed to optimize the convolution of FIR filter banks for DWPT decomposition, which reduces the hardware resource utilization by not requiring any embedded digital signal processing (DSP) blocks. The proposed AFS and CSDBE-based DWPT system is embedded on the Virtex-7 FPGA board for testing. The proposed design is implemented as an intellectual property (IP) logic core that can easily be integrated into DSP systems for sub-band analysis. The achieved results conclude that the proposed method is very efficient in improving hardware resource utilization while maintaining accuracy of the result of DWPT.

Design on MPEC2 AAC Decoder

  • NOH, Jin Soo;Kang, Dongshik;RHEE, Kang Hyeon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1567-1570
    • /
    • 2002
  • This paper deals with FPGA(Field Programmable Gate Array) implementation of the AAC(Advanced Audio Coding) decoder. On modern computer culture, according to the high quality data is required in multimedia systems area such as CD, DAT(Digital Audio Tape) and modem. So, the technology of data compression far data transmission is necessity now. MPEG(Moving Picture Experts Group) would be a standard of those technology. MPEG-2 AAC is the availableness and ITU-R advanced coding scheme far high quality audio coding. This MPEG-2 AAC audio standard allows ITU-R 'indistinguishable' quality according to at data rates of 320 Kbit/sec for five full-bandwidth channel audio signals. The compression ratio is around a factor of 1.4 better compared to MPEG Layer-III, it gets the same quality at 70% of the titrate. In this paper, for a real time processing MPEG2 AAC decoding, it is implemented on FPGA chip. The architecture designed is composed of general DSP(Digital Signal Processor). And the Processor designed is coded using VHDL language. The verification is operated with the simulator of C language programmed and ECAD tool.

  • PDF

Data Compression Algorithm for Efficient Data Transmission in Digital Optical Repeaters

  • Kim, Jae Wan;Eom, Doo Seop
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.142-146
    • /
    • 2012
  • Today, the demand for high-speed data communication and mobile communication has exploded. Thus, there is a growing need for optical communication systems that convert large volumes of data to optical signals and that accommodate and transmit the signals across long distances. Digital optical communication with these characteristics consists of a master unit (MU) and a slave unit (SU). However, the digital optical units that are currently commercialized or being developed transmit data without compression. Thus, digital optical communication using these units is restricted by the quantity of optical frames when adding diversity or operating with various combinations of CDMA, WCDMA, WiBro, GSM, LTE, and other mobile communication technologies. This paper suggests the application of a data compression algorithm to a digital signal processor (DSP) chip as a field programmable gate array (FPGA) and a complex programmable logic device (CPLD) of a digital optical unit to add separate optical waves or to transmit complex data without specific changes in design of the optical frame.

Analysis of analog MPPT Algorithms for Low cost Photovoltaic System (저가형 태양광 발전시스템을 위한 아날로그 MPPT 알고리즘의 특성 해석)

  • Kim Han-Goo;Lee Sang-Yong;Choi Moon-Gyu;Kim Hong-Sung;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, Simple and inexpensive analog maximum power point tracker (MPPT) algorithm for photovoltaic power system and low power system of doesn't use digital signal processor (DSP). The control circuit is composed such that the actual current and voltage are sensed directly from the PV array. These two signals are then multiplied by a single-chip multiplier. The multiplier output go through different time constants genesis pulse width modulated to switch. Finally those were verified through simulation.

  • PDF

Implementation of a No Pulse Competition CPS-SPWM Technique Based on the Concentrated Control for Cascaded Multilevel DSTATCOMs

  • Wang, Yue;Yang, Kun;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1139-1146
    • /
    • 2014
  • Digital signal processor (DSP) and field programmable gate array (FPGA) based concentrated control systems are designed for implementing CPS-SPWM strategies. The self-defined universal asynchronous receiver/transmitter (UART) protocol is used for communication between a master controller and an individual module controller via high speed links. Aimed at undesired pulse competition, this paper analyzes its generation mechanism and presents a new method for eliminating competition pulses with no time delay. Finally, the proposed concentrated controller is applied to a 10kV/10MVar distribution static synchronous compensator (DSTATCOM) industrial prototype. Experimental results show the accuracy and reliability of the concentrated controller, and verify the superiority of the proposed elimination method for competition pulses.

Method of SSO Noise Reduction on FPGA of Digital Optical Units in Optical Communication

  • Kim, Jae Wan;Eom, Doo Seop
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.97-101
    • /
    • 2013
  • There is a growing need for optical communication systems that convert large volumes of data to optical signals and that accommodate and transmit the signals across long distances. Digital optical communication consists of a master unit (MU) and a slave unit (SU). The MU transmits data to SU using digital optical signals. However, digital optical units that are commercially available or are under development transmit data using two's complement representation. At low input levels, a large number of SSOs (simultaneous switching outputs) are required because of the high rate of bit switching in two's complement, which thereby increases the power noise. This problem reduces the overall system capability because a DSP (digital signal processor) chip (FPGA, CPLD, etc.) cannot be used efficiently and power noise increases. This paper proposes a change from two's complement to a more efficient method that produces less SSO noise and can be applied to existing digital optical units.

Comparison and analysis of the MPPT algorithms in transformerless grid-connected PV PCS (변압기 없는 계통연계형 PV PCS에서의 MPPT 제어기법 비교 분석)

  • Lee Kyungsoo;Jung Youngseck;So Junghoon;Yu Gwonjong;Choi Jaeho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1471-1473
    • /
    • 2004
  • Maximum power point tracking(MPPT) is used in photovoltaic(PV) systems to maximize the photovoltaic array output power, irrespective of the temperature and irradiation conditions. The object of this paper is to compare and analyze MPPT efficiency for different MPPT techniques by changing irradiance. Also, this paper introduces transformerless grid-connected inverter. Simple flow charts and characteristics of each MPPT algorithm are shown. The implementation of transformerless grid-connected inveter system was based on a digital signal processor(DSP). Simulation was carried out for each MPPT method.

  • PDF

Implementation of a Fast Current Controller using FPGA (FPGA를 이용한 고속 전류 제어기의 구현)

  • Jung, Eun-Soo;Lee, Hak-Jun;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.223-225
    • /
    • 2007
  • 본 논문에서는 FPGA(Field Programmable Gate Array) 기반의 전류 제어기를 설계하고 구현하였다. 기존의 DSP (Digital Signal Processor) 기반의 전류 제어기는 알고리즘 연산으로 인해 일반적으로 한 샘플링의 디지털 시지연이 발생한다. 반면에, FPGA 기반의 전류제어기는 FPGA의 높은 연산 능력을 이용하여, 알고리즘 연산에 필요한 시간을 감소시킬 수 있다. 이는 시지연이 물리적으로 줄기 때문에, 어떠한 시지연 보상 알고리즘 없이 전류 제어기의 대역폭을 향상시킬 수 있다. 구현된 FPGA 기반의 전류 제어기의 성능은 실험을 통해 검증되었다.

  • PDF