• Title/Summary/Keyword: DRAM packaging

Search Result 8, Processing Time 0.02 seconds

Experimental investigation of Scalability of DDR DRAM packages

  • Crisp, R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.73-76
    • /
    • 2010
  • A two-facet approach was used to investigate the parametric performance of functional high-speed DDR3 (Double Data Rate) DRAM (Dynamic Random Access Memory) die placed in different types of BGA (Ball Grid Array) packages: wire-bonded BGA (FBGA, Fine Ball Grid Array), flip-chip (FCBGA) and lead-bonded $microBGA^{(R)}$. In the first section, packaged live DDR3 die were tested using automatic test equipment using high-resolution shmoo plots. It was found that the best timing and voltage margin was obtained using the lead-bonded microBGA, followed by the wire-bonded FBGA with the FCBGA exhibiting the worst performance of the three types tested. In particular the flip-chip packaged devices exhibited reduced operating voltage margin. In the second part of this work a test system was designed and constructed to mimic the electrical environment of the data bus in a PC's CPU-Memory subsystem that used a single DIMM (Dual In Line Memory Module) socket in point-to-point and point-to-two-point configurations. The emulation system was used to examine signal integrity for system-level operation at speeds in excess of 6 Gb/pin/sec in order to assess the frequency extensibility of the signal-carrying path of the microBGA considered for future high-speed DRAM packaging. The analyzed signal path was driven from either end of the data bus by a GaAs laser driver capable of operation beyond 10 GHz. Eye diagrams were measured using a high speed sampling oscilloscope with a pulse generator providing a pseudo-random bit sequence stimulus for the laser drivers. The memory controller was emulated using a circuit implemented on a BGA interposer employing the laser driver while the active DRAM was modeled using the same type of laser driver mounted to the DIMM module. A custom silicon loading die was designed and fabricated and placed into the microBGA packages that were attached to an instrumented DIMM module. It was found that 6.6 Gb/sec/pin operation appears feasible in both point to point and point to two point configurations when the input capacitance is limited to 2pF.

The Thermal Characterization of Chip Size Packages

  • Park, Sang-Wook;Kim, Sang-Ha;Hong, Joon-Ki;Kim, Deok-Hoon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.09a
    • /
    • pp.121-145
    • /
    • 2001
  • Chip Size Packages (CSP) are now widely used in high speed DRAM. The major driving farce of CSP development is its superior electrical performance than that of conventional package. However, the power dissipation of high speed DRAM like DDR or RAMBUS DRAM chip reaches up to near 2W. This fact makes the thermal management methods in DRAM package be more carefully considered. In this study, the thermal performances of 3 type CSPs named $\mu-BGA$^{TM}$$ $UltraCSP^{TM}$ and OmegaCSP$^{TM}$ were measured under the JEDEC specifications and their thermal characteristics were of a simulation model utilizing CFD and FEM code. The results show that there is a good agreement between the simulation and measurement within Max. 10% of $\circledM_{ja}$. And they show the wafer level CSPs have a superior thermal performance than that of $\mu-BGA.$ Especially the analysis results show that the thermal performance of wafer level CSPs are excellent fur modulo level in real operational mode without any heat sink.

  • PDF

DIMM-in-a-PACKAGE Memory Device Technology for Mobile Applications

  • Crisp, R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.45-50
    • /
    • 2012
  • A family of multi-die DRAM packages was developed that incorporate the full functionality of an SODIMM into a single package. Using a common ball assignment analogous to the edge connector of an SODIMM, a broad range of memory types and assembly structures are supported in this new package. In particular DDR3U, LPDDR3 and DDR4RS are all supported. The center-bonded DRAM use face-down wirebond assembly, while the peripherybonded LPDDR3 use the face-up configuration. Flip chip assembly as well as TSV stacked memory is also supported in this new technology. For the center-bonded devices (DDR3, DDR4 and LPDDR3 ${\times}16$ die) and for the face up wirebonded ${\times}32$ LPDDR3 devices, a simple manufacturing flow is used: all die are placed on the strip in a single machine insertion and are sourced from a single wafer. Wirebonding is also a single insertion operation: all die on a strip are wirebonded at the same time. Because the locations of the power signals is unchanged for these different types of memories, a single consolidated set of test hardware can be used for testing and burn-in for all three memory types.

Design Procedure for System in Package (SIP) Business

  • Kwon, Heung-Kyu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.109-119
    • /
    • 2003
  • o In order to start SIP Project .Marketing (& ASIC team) should present biz planning, schedule, device/SIP specs., in SIP TFT prior to request SIP development for package development project. .In order to prevent (PCB) revision, test, burn-in, & quality strategy should be fixed by SIP TFT (PE/Test, QA) prior to request for PKG development. .Target product price/cost, package/ test cost should be delivered and reviewed. o Minimum Information for PCB Design, Package Size, and Cost .(Required) package form factor: size, height, type (BGA, QFP), Pin count/pitch .(Estimated) each die size including scribe lane .(Estimated) pad inform. : count, pitch, configuration(in-line/staggered), (open) size .(Estimated) each device (I/O & Core) power (especially for DRAM embedded SIP) .SIP Block diagram, and net-list using excel sheet format o Why is the initial evaluation important\ulcorner .The higher logic power resulted in spec. over of DRAM Tjmax. This caused business drop longrightarrow Thermal simulation of some SIP product is essential in the beginning stage of SIP business planning (or design) stage. (i.e., DRAM embedded SIP) .When SIP is developed using discrete packages, the I/O driver Capa. of each device may be so high for SIP. Since I/O driver capa. was optimized to discrete package and set board environment, this resulted in severe noise problem in SIP. longrightarrow In this case, the electrical performance of product (including PKG) should have been considered (simulated) in the beginning stage of business planning (or design).

  • PDF

실리사이드 제조공정에 따른 CMOS의 전기적 특성 비교

  • 김종채;김영철;김기영;서화일;김노유
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.209-212
    • /
    • 2001
  • DRAM과 Logic을 하나의 칩 위에 제조하기 위한 EDL (Embedded DRAM and Logic) 기술에 코발트 실리사이드가 접촉저항을 낮추기 위해 사용된다. 본 연구에서는 코발트 실리사이드 제조에 사용되는 보호막이 CMOS 소자의 전기적 특성에 미치는 영향을 조사하였다. EDL 제조공정이 완전히 진행된 소자에 적용된 실리사이드가 누설전류에 미치는 영향을 비교하였다. 또한 실리사이드 보호막이 전기적 신호의 delay에 미치는 영향을 평가하기 위해, 99개의 CMOS 인버터가 직렬연결되어 있는 평가패턴을 사용하였다. 이상의 결과로 TiN 보호막이 pMOSFET의 전류전달 능력과 그 결과로 생기는 속도지연 측면에서 Ti 보호막보다 우수함을 알 수 있었다.

  • PDF

A Study on the Self-annealing Characteristics of Electroplated Copper Thin Film for DRAM Integrated Process (DRAM 집적공정 응용을 위한 전기도금법 증착 구리 박막의 자기 열처리 특성 연구)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.61-66
    • /
    • 2018
  • This research scrutinizes the self-annealing characteristics of copper used to metal interconnection for application of DRAM fabrication process. As the time goes after the copper deposited, the grain of copper is growing. It is called self-annealing. We use the electroplating method for copper deposition and estimate two kinds of electroplating chemicals having different organic additives. As the time of self-annealing is elapsed, sheet resistance decreases with logarithmic dependence of time and is finally saturated. The improvement of sheet resistance is approximately 20%. The saturation time of experimental sample is shorter than that of reference sample. We can find that self-annealing is highly efficient in grain growth of copper through the measurement of TEM analysis. The structure of copper grain is similar to the bamboo type useful for current flow. The results of thermal excursion characteristics show that the reliability of self-annealed sample is better than that of sample annealed at higher temperature. The self-annealed sample is not contained in hillock. The self-annealed samples grow until $2{\mu}m$ and develop in [100] direction more favorable for reliability.

A Study of Failure Mechanism through abnormal AlXOY Layer after pressure Cooker Test for DRAM device (DRAM 소자의 PCT 신뢰성 측정 후 비정상 AlXOY 층 형성에 의해 발생된 불량 연구)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun;Choi, Chae-Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.31-36
    • /
    • 2018
  • This research scrutinizes the reason of failure after pressure cooker test (PCT) for DRAM device. We use the physical inspecting tools, such as microscope, SEM and TEM, and finally find the discolor phenomenon, corrosion of Al and delamination of inter-metal dielectric (IMD) in the failed devices after PCT. Furthermore, we discover the abnormal $Al_XO_Y$ layer on Al through the careful additional measurements. To find the reason, we evaluate the effect of package ball size and pinhole in passivation layer. Unfortunately, those aren't related to the problems. We also estimate halide effect of Al. The halogens such like Cl are contained within EMC material. Those result in the slight improving of PCT characteristics but do not perfectly solve the problems. We make a hypothesis of Galvanic corrosion. We can find the residue of Ti at the edge of pad open area. We can see the improving the PCT characteristics by the time split of repair etch. The possible mechanism of the PCT failure can be deduced as such following sequence of reactions. The remained Ti reacts on the pad Al by Galvanic corrosion. The ionized Al is easily react with the $H_2O$ supplied under PCT environment, and finally transfers to the abnormal $Al_XO_Y$ layer.

Ti/Cu CMP process for wafer level 3D integration (웨이퍼 레벨 3D Integration을 위한 Ti/Cu CMP 공정 연구)

  • Kim, Eunsol;Lee, Minjae;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.37-41
    • /
    • 2012
  • The wafer level stacking with Cu-to-Cu bonding becomes an important technology for high density DRAM stacking, high performance logic stacking, or heterogeneous chip stacking. Cu CMP becomes one of key processes to be developed for optimized Cu bonding process. For the ultra low-k dielectrics used in the advanced logic applications, Ti barrier has been preferred due to its good compatibility with porous ultra low-K dielectrics. But since Ti is electrochemically reactive to Cu CMP slurries, it leads to a new challenge to Cu CMP. In this study Ti barrier/Cu interconnection structure has been investigated for the wafer level 3D integration. Cu CMP wafers have been fabricated by a damascene process and two types of slurry were compared. The slurry selectivity to $SiO_2$ and Ti and removal rate were measured. The effect of metal line width and metal density were evaluated.