• Title/Summary/Keyword: DLC Film

Search Result 239, Processing Time 0.031 seconds

Surface and Physical Properties of Polymer Insulator Coated with Diamond-Like Carbon Thin Film (DLC 박막이 코팅된 폴리머 애자의 표면 및 물리적 특성)

  • Kim, Young Gon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.16-20
    • /
    • 2021
  • In this study, we tried finding new materials to improve the stain resistance properties of polymer insulating materials. Using the filtered vacuum arc source (FVAS) with a graphite target source, DLC thin films were deposited on silicon and polymer insulator substrates depending on their thickness to confirm the surface properties, physical properties, and structural properties of the thin films. Subsequently, the possibility of using a DLC thin film as a protective coating material for polymer insulators was confirmed. DLC thin films manufactured in accordance with the thickness of various thin films exhibited a very smooth and uniform surface. As the thin film thickness increased, the surface roughness value decreased and the contact angle value increased. In addition, the elastic modulus and hardness of the DLC thin film slightly increased, and the maximum values of elastic modulus and hardness were 214.5 GPa and 19.8 GPa, respectively. In addition, the DLC thin film showed a very low leakage current value, thereby exhibiting electrical insulation properties.

A Study on the DLC Film Coating for Improving Loosening Torque of Dental Implant Screw (치과 임플란트 스크루 풀림토크 개선용 DLC 박막 코팅에 관한 연구)

  • Jeong, Woon-Jo;Cho, Jae-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1375-1381
    • /
    • 2018
  • In this paper, we studied coatings of the DLC thin film for improving loosening torque of dental implant screw. We used a filtered arc ion plating process which can realize the most dense DLC layer by coating the DLC thin film on the surface of the dental abutment screw. It showed both hardness comparable to diamond and low friction coefficient similar to graphite, and to improve the loosening phenomenon by increasing the screw tightening force Cr/CrN, Ti/TiN or Ti/TiN/Cr/CrN buffer layers were deposited for 5 to 10 minutes to improve the adhesion of the DLC thin film to the surface of the Ti (Gr.5), and then the DLC thin film was coated for about 15 minutes. As a result, the Cr/CrN buffer layer exhibited the highest hardness of 29.7 GPa, the adhesion of 18.62N on average, and a very low coefficient of friction of less than 0.2 as a whole. And we measured loosening torque after one million times with masticatory movement simulator. As a result, the values of the coated screw loosening torque were clearly higher than those of the uncoated screw. From this, it was found that the DLC coating was effective methods improving the loosening torque. In addition, it was confirmed that the cytotoxicity test and cell adhesion test showed high biocompatibility.

A study on thermal behavior of Diamond-like carbon film (Diamond-like carbon film의 열적거동에 관한 연구)

  • Cho, kwang-Rae;Noh, Jeong-Yeon;So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.119-123
    • /
    • 2012
  • Diamond-like carbon(DLC) thin films with interlayer were deposited on silicon substrate using a reactive sputtering method. The thermal stability of the films was investigated by annealing the films for 1hr in air in the range of 100 to $500^{\circ}C$. The $I_D/I_G$ ratio increased with increasing temperature as related to the $sp^3-to-sp^2$transition. Accordingly, G-position shifting started from $150^{\circ}C$ in the DLC films and from $270^{\circ}C$ in the a-Si/DLC films. Moreover, in the case of the a-Si/DLC films the film still observed even after annealing at $500^{\circ}C$. The thermal stability of the reactive sputtered DLC films appeared to be improved by the a-Si interlayer.

  • PDF

Tribological Properties of DLC film on Modified Surface by TiC Plasma Immersion Ion Implantation and Deposition (TiC 이온 주입 층에 증착된 DLC 박막의 트라이볼로지적 특성)

  • Yi, Jin-Woo;Kim, Jong-Kuk;Kim, Seock-Sam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.956-960
    • /
    • 2004
  • Effects of ion implantation and deposition on the tribological properties of DLC film as a function of implanted energies and process times were investigated. TiC ions were implanted and deposited on the Si-wafer substrates followed by DLC coating using ion beam deposition method. In order to study tribological properties such as friction coefficient and behavior of DLC film on the modified surface as a function of implanted energies and process times, we used a ball-on-disc type apparatus in the atmospheric environment. From results of wear test, as the implanted energy was increased, the friction coefficient was more stable below 0.1.

  • PDF

Electrical Properties of Diamond-like Carbon Thin Film synthesized by PECVD (PECVD로 합성한 다이아몬드상 카본박막의 전기적 특성)

  • Choi, Won-Seok;Park, Mun-Gi;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.973-976
    • /
    • 2008
  • In addition to its similarity to genuine diamond film, diamond-like carbon (DLC) film has many advantages, including its wide band gap and variable refractive index. In this study, DLC films were prepared by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas. We examined the effects of the RF power on the electrical properties of the DLC films. The films were deposited at several RF powers ranging from 50 to 175 W in steps of 25 W. The leakage current of DLC films increased at higher deposition RF power. And the resistivities of DLC films grown at 50 W and 175 W were $5\times10^{11}$ ${\Omega}cm$ and $2.68\times10^{10}$ ${\Omega}cm$, respectively.

Effect of Diamond-Like Carbon Passivation on Physical and Electrical Properties of Plasma Polymer (플라즈마 폴리머의 물리적, 전기적 특성에서 다이아몬드상 탄소 패시베시션이 미치는 영향)

  • Park, Y.S.;Cho, S.J.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.193-198
    • /
    • 2012
  • In this study, we have fabricated the polymer insulator and diamond-like carbon (DLC) thin films by using plasma enhanced chemical vapor deposition methods. we fabricated the DLC films with various thicknesses as the passivation layer on plasma polymer and investigated the structural, physical, and electrical properties of DLC/plasma polymer films. The plasma polymer synthesized in this work had the low leakage current and low dielectric constant. The values of hardness and elastic modulus in DLC/plasma polymer films are increased, and the value of rms surface roughness is decreased, and contact angle value is increased with increasing DLC film thickness. In the electrical properties of DLC/plasma polymer, the value of the dielectric constant is increased, however the leakage current property of the DLC/plasma polymer is improved than that of plasma polymer film with increasing DLC film thickness.

A Study of a Changing of Physical and Chemical Intra-structure on Si-DLC Film during Tribological Test (실리콘 함유 DLC 박막의 마찰마모 시험에 의한 물리적 특성 및 화학적 결합 구조 변화 고찰)

  • Kim, Sang-Gweon;Lee, Jae-Hoon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.127-132
    • /
    • 2011
  • The silicon-containing Diamond-like Carbon (Si-DLC) film as an low friction coefficient coating has especially treated a different silicon content by plasma-enhanced chemical vapor deposition (PECVD) process at $500^{\circ}C$ on nitrided-STD 11 mold steel with (TMS) gas flow rate. The effects of variable silicon content on the Si-DLC films were tested with relative humidity of 5, 30 and 85% using a ball-on-disk tribometer. The wear-tested and original surface of Si-DLC films were analysed for an understanding of physical and chemical characterization, including a changing structure, via Raman spectra and nano hardness test. The results of Raman spectra have inferred a changing intra-structure from dangling bonds. And high silicon containing DLC films have shown increasing carbon peak ratio ($I_D/I_G$) values and G-peak values. In particular, the tribological tested surface of Si-DLC was shown the increasing hardness value in proportional to TMS gas flow rate. Therefore, at same time, the structure of the Si-DLC film was changed to a different intra-structure and increased hardness film with mechanical shear force and chemical reaction.

Hydrogen ion effect on the formation of DLC thin film by negative carbon ion beam (탄소 음이온빔으로 증착되는 DLC 박막 제조에 미치는 수소 이온의 영향)

  • 한동원;김용환;최동준;백홍구
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.324-329
    • /
    • 2000
  • We investigated the effect of hydrogen ion beam on the formation of DLC thin film, which is deposited on the Si substrate with negative carbon ion by $Cs^+$ ion sputtering and positive hydrogen ion by Kauffmann type ion source. The amount of hydrogen in the DLC films increased as increasing hydrogen gas flow rate from 0 sccm to 12 sccm. As increasing hydrogen flow rate, $sp^2$bonding structure increased. The reason is that the hydrogen ions have relatively high energy, although total amount of hydrogen is very small compared with that of CVD process. These results suggest that the physical energy transfer plays a dominant role on the formation of DLC film.

  • PDF

Effect of fluorine gas addition for improvement of surface wear property of DLC thin film deposited by using PECVD (PECVD를 이용한 DLC 박막의 표면 마모 특성 향상을 위한 플루오린 첨가의 영향)

  • Park, Hyun-Jun;Kim, Jun-Hyung;Moon, Kyoung-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.357-364
    • /
    • 2021
  • In this study, DLC films deposited by PECVD were evaluated to the properties of super-hydrophobic by CF4 treatment. The structure of DLC films were confirmed by Raman Spectra whether or not mixed sp3 (like diamond) peak and sp2 (like graphite) peak. And the hydrogen contents in the DLC films (F-DLC) were measured by RBS analysis. In addition, DLC films were analyzed by scratch test for adhesion, nano-indentation for hardness and tribo-meter of Ball-on-disc type for friction coefficient. In the result of analysis, DLC films had traditional structure regardless of variation of hardness at constant conditions. Also adhesion of DLC film was increased as higher material hardness. Otherwise, friction coefficient was increased as lower material hardness. The DLC films were treated by CF4 plasma treatment to enhance the properties of super-hydrophobic. And the DLC films were measured by ESEM(Enviromental Scanning Electron Microscope) for water condensation.