• Title/Summary/Keyword: DGGE fingerprinting

Search Result 18, Processing Time 0.02 seconds

A Comparison of Bacterial Diversity Associated with the Sponge Spirastrella abata Depending on RFLP and DGGE (RFLP와 DGGE에 따른 해면 Spirastrella abata 공생세균의 다양성 비교)

  • Jeong, Eun-Ji;Im, Choon-Soo;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.366-374
    • /
    • 2010
  • Culture-dependent RFLP and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Spirastrella abata. A total of 164 bacterial strains associated with the sponge were cultivated using Zobell and Natural sea salt media. PCR amplicons of the 16S rDNA from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rDNA sequences derived from RFLP patterns showed more than 95% similarities compared with known bacterial species, and the isolates belonged to four phyla, Proteobacteria (Alphaproteobacteria, Gammaproteobacteria), Actinobacteria, Firmicutes, and Bacteriodetes, of which Alphaproteobacteria was dominant. DGGE fingerprinting of 16S rDNAs amplified from the sponge- derived total gDNA showed five major DGGE bands, and their sequences showed more than 96% similarities compared with available sequences. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of four phyla, including Proteobacteria (Alphaproteobacteria, Gammaproteobacteria), Actinobacteria, Spirochetes, and Chloroflexi. Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were commonly found in bacteria associated with S. abata by both RFLP and DGGE methods; however, overall bacterial community in the sponge differed depending on the analysis methods.

Plankton community analysis in the lake of North-Han river system using PCR-DGGE method (PCR-DGGE 방법을 이용한 북한강 수계 호수의 플랑크톤 군집 분석)

  • Kim, Yoon-Jung;Kim, Min-Kyung;Lee, Sang-Don
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.419-428
    • /
    • 2012
  • Taxonomic identification of phytoplankton has been a difficult task, even for the experienced taxonomist. Many non-descript, yet abundant, phytoplanktons do exist without distinguishing features which cause difficulties in morphological identification. Using PCR(polymerase chain reaction)-DGGE(denaturing gradient gel electrophoresis)method, which is known to be a powerfulfingerprinting technique to analyze diversity and dynamics of microbial populations, this study aimed to find the way to overcome the limitation of morphological identification. As a result, a total of 46 bands from samples in five lakes were detected in September and 27 bands in November. Fingerprinting results showed convenient and comparative analyses among each sampling site. In this study, PCR-DGGE method was used to figure out diversity and dynamics of plankton community in the lakes of North-Han River system. Also, the possibility of DGGE technique as an identification tool for phytoplankton was estimated.

Bacterial diversity of the Marine Sponge, Halichondria panicea by ARDRA and DGGE (ARDRA와 DGGE를 이용한 Halichondria panicea 해면의 공생세균 다양성)

  • Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.398-406
    • /
    • 2015
  • Culture-dependent ARDRA and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Halichondria panicea collected from Jeju Island. A total of 120 bacterial strains associated with the sponge were cultivated using modified Zobell and Marine agar media. PCR amplicons of the 16S rRNA gene from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rRNA gene sequences derived from ARDRA patterns showed more than 96% similarities compared with known bacterial species, and the isolates belonged to four classes, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Firmicutes, of which Alphaproteobacteria was dominant. DGGE fingerprinting of 16S rRNA genes amplified from the sponge-derived total gDNA showed 14 DGGE bands, and their sequences showed 100% similarities compared with the sequences available in GenBank. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of seven classes, including Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteira, Bacteroidetes, Cyanobacteria, and Chloroflexi. According to both the ARDRA and DGGE methods, three classes, Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, were commonly found in H. panicea. However, overall bacterial community in the sponge differed depending on the analysis methods. Sponge showed more various bacterial community structures in culture independent method than in culture-dependent method.

Phylogenetic Analysis of Bacterial Diversity in the Marine Sponge, Asteropus simplex, Collected from Jeju Island (제주도에서 채집한 해양 해면, Asteropus simplex의 공생세균에 관한 계통학적 분석)

  • Jeong, In-Hye;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.275-283
    • /
    • 2012
  • Culture-dependent RFLP and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Asteropus simplex collected from Jeju Island. A total of 120 bacterial strains associated with the sponge were cultivated using modified Zobell and MA media. PCR amplicons of the 16S rDNA from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rDNA sequences derived from RFLP patterns showed more than 94% similarities compared with known bacterial species, and the isolates belonged to five phyla, Alphaproteobacteria, Gammaproteobacteria Actinobacteria, Bacteroidetes, and Firmicutes, of which Gammaproteobacteria was dominant. DGGE fingerprinting of 16S rDNAs amplified from the sponge-derived total gDNA showed 12 DGGE bands, and their sequences showed more than 90% similarities compared with available sequences. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of seven phyla, including Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Actinobacteira, Chloroflexi, and Nitrospira. Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were commonly found in bacteria associated with A. simplex by both RFLP and DGGE methods, however, overall bacterial community in the sponge differed depending on the analysis methods. Sponge showed more various bacterial community structures in culture-independent method than in culture-dependent method.

Application of rDNA-PCR Amplification and DGGE Fingerprinting for Detection of Microbial Diversity in a Malaysian Crude Oil

  • Liew, Pauline Woan Ying;Jong, Bor Chyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.815-820
    • /
    • 2008
  • Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.

Bacterial Diversity of the South Pacific Sponge, Dactylospongia metachromia Based on DGGE Fingerprinting (DGGE에 의한 남태평양 해면 Dactylospongia metachromia의 공생세균 다양성)

  • Jeong, In-Hye;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.377-382
    • /
    • 2013
  • The bacterial community structures of the marine sponge, Dactylospongia metachromia, collected from Chuuk of Micronesia on February 2012, were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints of two individuals of D. metachromia, CH607 and CH840 showed the same band patterns. The sequences derived from DGGE bands revealed 93~100% similarities with known bacterial species in the public database and high similarity with uncultured bacterial clones. The bacterial community structures of both D. metachromia sponges (CH607, CH840) were composed of 6 phyla, 8 classes: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, Spirochaetes. DGGE fingerprint - based phylogenetic analysis revealed that the bacterial community profiles were identical in two individuals of the same sponge species collected from the same geographical location.

Analysis of Microbial Communities During Cyanobacterial Bloom in Daechung Reservoir by DGGE (DGGE를 이용한 대청호 수화 발생시기의 세균군집 분석)

  • Ko So-Ra;Park Seong-Joo;Ahn Chi-Yong;Choi Aeran;Lee Jung-Sook;Kim Hee-Sik;Yoon Byung-Dae;Oh Hee-Mock
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.205-210
    • /
    • 2004
  • The change of bacterial communities during cyanobacterial bloom was analyzed by DGGE in Daechung Reservoir from July to October in 2003. The traditional morphological analysis showed that the genera of Microcystis, Chroococcus, Oscillatoria, and Phormidium were dominated. The most frequent band in the DGGE profile by 16S rDNA sequence analysis was identified as Microcystis flos-aquae and the cyanobacterial bloom was peaked on September 2. Oscillatoria spp. were also identified and Aphanizomenon flos-aquae dominated in the middle of August. Judging from the analysis of the digitalized DGGE profiles using the cluster analysis technique, the microbial community on September 2 was considerably different from others. Consequently, it seems that the gene fingerprinting method can give not only the similar results to the traditional morphological method but also additional information on the bacterial species and similarity among the examined microbial communities.

Bioremediation of Oil-Contaminated Soil Using an Oil-Degrading Rhizobacterium Rhodococcus sp.412 and Zea mays. (유류 분해 근권세균 Rhodococcus sp. 412와 옥수수를 활용한 유류 오염 토양의 정화)

  • Hong, Sun-Hwa;Park, Hae-Lim;Ko, U-Ri;Yoo, Jae-Jun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.150-157
    • /
    • 2007
  • The advanced bioremediation of diesel-contaminated soil through the exploration of bacterial interaction with plants was studied. A diesel-degrading rhizobacterium, Rhodococcus sp.412, and a plant species, Zea mays, having tolerant against diesel was selected. Zea mays was seeded in uncontaminated soil or diesel-contaminated soil with or without Rhodococcus sp. 412. After cultivating for 30 days, the growth of Zea mays in the contaminated soil inoculated with Rhodococcus sp. 412 was better than that in the contaminated soil without the bacterium. The residual diesel concentrations were lowered by seeding Zea mays or inoculating Rhodococctis sp. 412. These results Indicate that the simultaneous use of Zea mays and Rhodococcus sp. 412 can give beneficial effect to the remediation of oil-contaminated soil. Bacterial community was characterized using a 16S rDNA PCR and denaturing gradient gel electrophoresis (DGGE) fingerprinting method. The similarities of DGGE fingerprints were $20.8{\sim}39.9%$ between the uncontaminated soil and diesel contaminated soil. The similarities of DGGE fingerprints were $21.9%{\sim}53.6%$ between the uncontaminated soil samples, and $31.6%{\sim}50.0%$ between the diesel-contaminated soil samples. This results indicated that the structure of bacterial community was significantly influence by diesel contamination.

Use of Terminal Restriction Length Polymorphism (T-RFLP) Analysis to Evaluate Uncultivable Microbial Community Structure of Soil

  • Chauhan, Puneet Singh;Shagol, Charlotte C.;Yim, Woo-Jong;Tipayno, Sherlyn C.;Kim, Chang-Gi;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.127-145
    • /
    • 2011
  • Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time- and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.

Phylogenetic diversity of bacterial community associated with the tropical marine sponges, Cinachyrella sp. and Plakortis sp. (열대 해양 해면 Cinachyrella sp.와 Plakortis sp.의 공생세균 군집의 계통학적 다양성)

  • Jeong, Jong-Bin;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • The bacterial community structures of two marine sponges, Cinachyrella sp. and Plakortis sp., collected from Chuuk in the South Pacific in February 2012 were analyzed by PCR-DGGE (Denaturing Gradient Gel Electrophoresis) fingerprinting. After isolation of the total genomic DNAs from the sponges, the V3 regions of the 16S rRNA genes were amplified and subjected to DGGE profiling. The two species of sponges displayed different DGGE band patterns. The sequences derived from the DGGE bands revealed 85-100% similarities to known bacterial species in the public database. The bacterial community of Cinachyrella sp. was composed of 6 classes: Actinobacteria, Bacteroidetes, Chloroflexi, and Proteobacteria (Alpha-, Gamma-, Delta-). The bacterial community of Plakortis sp. included 7 classes: Actinobacteria, Chloroflexi, Firmicutes, Spirochaetes, and Proteobacteria (Alpha-, Gamma-, Delta-). Though Actinobacteria, Chloroflexi and Proteobacteria were commonly found in both sponges, the predominant bacterial communities differed between the two. Namely, the predominant bacterial groups in Cinachyrella sp. and Plakortis sp. were Proteobacteria and Chloroflexi, respectively. The sponge-associated bacteria are sponge host-specific, as each of the tested sponges from the same geographical location had different predominant bacterial diversity.