Browse > Article
http://dx.doi.org/10.7845/kjm.2013.3090

Bacterial Diversity of the South Pacific Sponge, Dactylospongia metachromia Based on DGGE Fingerprinting  

Jeong, In-Hye (Department of Biological Science and Biotechnology, Hannam University)
Park, Jin-Sook (Department of Biological Science and Biotechnology, Hannam University)
Publication Information
Korean Journal of Microbiology / v.49, no.4, 2013 , pp. 377-382 More about this Journal
Abstract
The bacterial community structures of the marine sponge, Dactylospongia metachromia, collected from Chuuk of Micronesia on February 2012, were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints of two individuals of D. metachromia, CH607 and CH840 showed the same band patterns. The sequences derived from DGGE bands revealed 93~100% similarities with known bacterial species in the public database and high similarity with uncultured bacterial clones. The bacterial community structures of both D. metachromia sponges (CH607, CH840) were composed of 6 phyla, 8 classes: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, Spirochaetes. DGGE fingerprint - based phylogenetic analysis revealed that the bacterial community profiles were identical in two individuals of the same sponge species collected from the same geographical location.
Keywords
Dactylospongia metachromia; bacterial diversity; DGGE; sponge;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Burnett, W.J. and Mckenzie, J.D. 1997. Subcuticular bacteria from the brittle star Ophiactis ball (Echinodermata): Ophiuroideao represent a new lineage of extracellular marine symbionts in a subdivision of the class Protebacteria. Appl. Environ. Microbiol. 63, 1721-1724.
2 De La Fuente, J.A. and Manzanaro, S. 2003. Aldose reductase inhibitors from natural sources. Nat. Prod. Rep. 20, 243-251.   DOI   ScienceOn
3 Dupont, S., Corre, E., Li, Y., Vacelet, J., and Bourguet‐Kondracki, M.L. 2013. First insights into the microbiome of a carnivorous sponge. FEMS Microbiol. Ecol. 86, 520-531.   DOI   ScienceOn
4 Friedrich, A.B., Fischer, I., Proksch, P., Hacker, J., and Hentschel, U. 2001. Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38, 105-113.   DOI
5 Groudieva, T., Kambourova, M., Yusef, H., Royter, M., Grote, R., Trinks, H., and Antranikian, G. 2004. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8, 475-488.   DOI   ScienceOn
6 Guangyi, W. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545-551.   DOI   ScienceOn
7 Haber, M. and Ilan, M. 2013. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp. sponges. J. Appl. Microbiol. Doi: 10.1111/jam.12401   DOI   ScienceOn
8 Handeley, S., Kelly, S., and Kelly, M. 2003. Non-destructive video image analysis method for measuring growth in sponge farming: Preliminary results from the New Zealand bath-sponge Spongia (Heterofibria) manipulatus. N. Z. J. Mar. Freshwater Res. 37, 613-621.   DOI
9 Hentschel, U., Hopke, J., Horn, M., Friedrich, A.B., Wagner, M., Hacker, J., and Moore, B.S. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68, 4431-4440.   DOI   ScienceOn
10 Imhoff, J.F. 2001. True marine and halophilic anoxygenic phototrophic bacteria. Arch. Microbiol. 176, 243-254.   DOI
11 Jackson, S.A., Kennedy, J., Morrissey, J.P., O'Gara, F., and Dobson, A.D. 2012. Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microb. Ecol. 64, 105-116.   DOI   ScienceOn
12 Jeong, I.H., Kim, K.H., and Park, J.S. 2013. Analysis of bacterial diversity in sponges collected off Chujado, an Island in Korea, using barcoded 454 pyrosequencing: Analysis of a distinctive sponge group containing Chloroflexi. J. Microbiol. 51, 570-577.   DOI   ScienceOn
13 Kennedy, J., Baker, P., Piper, C., Cotter, P.D., Walsh, M., Mooij, M.J., Bourke, M.B., Rea, M.C., O'Connor, P.M., Ross, R.P., and et al. 2009. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish Waters. Mar. Biotechnol. 11, 384-396.   DOI   ScienceOn
14 Newman, D.J. and Cragg, G.M. 2004. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67, 1216-1238.   DOI   ScienceOn
15 Lau, W.W.Y., Jumars, P.A., and Armbrust, E.V. 2002. Genetic diversity of attached bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea (formerly Callianassa) californiensis (Decapoda:Thalassinidae). Microb. Ecol. 43, 455-466.   DOI   ScienceOn
16 Li, C.W., Chen, J.Y., and Hua, T.E. 1998. Precambrian sponges with cellular structures. Science 279, 879-882.   DOI   ScienceOn
17 Li, Z., Hu, Y., Liu, Y., Huang, Y., He, L., and Miao, X. 2007. 16S rDNA clone library-based bacterial phylogenetic diversity associated with three South China Sea sponges. World J. Microbiol. Biotechnol. 23, 1265-1272.   DOI   ScienceOn
18 Olson, J.B. and McCarthy, P.J. 2005. Associated bacterial communities of two deep-water sponges. Aquat. Microb. Ecol. 39, 47-55.   DOI   ScienceOn
19 Park, J.S. 2010. Bacterial community diversity associated with two marine sponges from the South Pacific Ocean based on 16S rDNA-DGGE analysis. Kor. J. Microbiol. 46, 255-261.   과학기술학회마을
20 Piel, J. 2009. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338-362.   DOI   ScienceOn
21 Ridley, C.P., Faulkner, D.J., and Haygood, M.G. 2005. Investigation of Oscillatoria spongeliae-dominated bacterial communities in four Dictyoceratid sponges. Appl. Environ. Microbiol. 71, 7366-7375.   DOI   ScienceOn
22 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
23 Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599.   DOI   ScienceOn
24 Schottner, S., Hoffmann, F., Cardenas, P., Rapp, H.T., Boetius, A., and Ramette, A. 2013. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS One 8, e5550.
25 Sekiguchi, H., Koshikawa, H., Hiroki, M., Murakami, S., Xu, K., Watanabe, M., Nakahara, T., Zhu, M., and Uchiyama, H. 2002. Bacterial distribution and phylogenetic diversity in the Changjiang estuary before the construction of the three gorges dam. Microb. Ecol. 43, 82-91.   DOI
26 Stouthamer, R., Breeuwer, J.A.J., and Hurst, G.D.D. 1999. Wolbachiapipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53, 71-102.   DOI   ScienceOn
27 Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI   ScienceOn
28 Wagner-Dobler, I., Beil, W., Lang, S., Meiners, M., and Laatsch, H. 2002. Integrated approach to explore the potential of marine microorganisms for the production of bioactive metabolites. Adv. Biochem. Eng. Biotechnol. 74, 207-238.
29 Wang, Z., Ling, B., Zhang, R., Suo, Y., Liu, Y., Yu, Z., and Liu, C. 2009. Docking and molecular dynamics studies toward the binding of new natural phenolic marine inhibitors and aldose reductase. J. Mol. Graph. Model. 28, 162-169.   DOI   ScienceOn
30 Webster, N.S., Negri, A.P., Munro, M.M., and Battershill, C.N. 2004. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6, 288-300.   DOI   ScienceOn
31 White, J.R., Patel, J., Ottesen, A., Arce, G., Blackwelder, P., and Lopez, J.V. 2012. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS One 7, e38204.   DOI
32 Weidner, S., Arnold, W., Stackebrandt, E., and Puhler, A. 2000. Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach. Microb. Ecol. 39, 22-31.   DOI   ScienceOn