DOI QR코드

DOI QR Code

Bacterial Diversity of the South Pacific Sponge, Dactylospongia metachromia Based on DGGE Fingerprinting

DGGE에 의한 남태평양 해면 Dactylospongia metachromia의 공생세균 다양성

  • Jeong, In-Hye (Department of Biological Science and Biotechnology, Hannam University) ;
  • Park, Jin-Sook (Department of Biological Science and Biotechnology, Hannam University)
  • 정인혜 (한남대학교 생명시스템과학과) ;
  • 박진숙 (한남대학교 생명시스템과학과)
  • Received : 2013.12.12
  • Accepted : 2013.12.27
  • Published : 2013.12.31

Abstract

The bacterial community structures of the marine sponge, Dactylospongia metachromia, collected from Chuuk of Micronesia on February 2012, were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints of two individuals of D. metachromia, CH607 and CH840 showed the same band patterns. The sequences derived from DGGE bands revealed 93~100% similarities with known bacterial species in the public database and high similarity with uncultured bacterial clones. The bacterial community structures of both D. metachromia sponges (CH607, CH840) were composed of 6 phyla, 8 classes: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, Spirochaetes. DGGE fingerprint - based phylogenetic analysis revealed that the bacterial community profiles were identical in two individuals of the same sponge species collected from the same geographical location.

2012년 2월 미크로네시아의 축(Chuuk)주에서 채집한 해양해면 Dactylospongia meachromia의 공생세균의 주요 군집구조를 Denaturing Gradient Gel Electrophoresis (DGGE) 방법을 이용하여 분석하였다. D. metachromia의 두 개체 CH607과 CH840를 이용하여 DGGE 분석을 수행한 결과, 동종의 두 개체 해면에서 동일한 밴드 패턴을 나타내었다. DGGE 밴드로부터 DNA를 추출하여 염기서열을 분석한 결과, 알려진 염기서열들과 93-100%의 유사도를 나타내었으며 밴드로부터 밝혀진 모든 서열들은 배양되지 않은 세균 클론들과 높은 상동성을 나타내었다. D. metachromia (CH607, CH840)의 공생세균 군집구조는 Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, Spirochaetes로 총 6문 8강으로 구성되었으며 동일한 지역에서 채집한 같은 종의 해면은 동일한 공생세균 군집구조를 나타냄을 확인하였다.

Keywords

References

  1. Burnett, W.J. and Mckenzie, J.D. 1997. Subcuticular bacteria from the brittle star Ophiactis ball (Echinodermata): Ophiuroideao represent a new lineage of extracellular marine symbionts in a subdivision of the class Protebacteria. Appl. Environ. Microbiol. 63, 1721-1724.
  2. De La Fuente, J.A. and Manzanaro, S. 2003. Aldose reductase inhibitors from natural sources. Nat. Prod. Rep. 20, 243-251. https://doi.org/10.1039/b204709h
  3. Dupont, S., Corre, E., Li, Y., Vacelet, J., and Bourguet‐Kondracki, M.L. 2013. First insights into the microbiome of a carnivorous sponge. FEMS Microbiol. Ecol. 86, 520-531. https://doi.org/10.1111/1574-6941.12178
  4. Friedrich, A.B., Fischer, I., Proksch, P., Hacker, J., and Hentschel, U. 2001. Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38, 105-113. https://doi.org/10.1111/j.1574-6941.2001.tb00888.x
  5. Groudieva, T., Kambourova, M., Yusef, H., Royter, M., Grote, R., Trinks, H., and Antranikian, G. 2004. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8, 475-488. https://doi.org/10.1007/s00792-004-0409-0
  6. Guangyi, W. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545-551. https://doi.org/10.1007/s10295-006-0123-2
  7. Haber, M. and Ilan, M. 2013. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp. sponges. J. Appl. Microbiol. Doi: 10.1111/jam.12401
  8. Handeley, S., Kelly, S., and Kelly, M. 2003. Non-destructive video image analysis method for measuring growth in sponge farming: Preliminary results from the New Zealand bath-sponge Spongia (Heterofibria) manipulatus. N. Z. J. Mar. Freshwater Res. 37, 613-621. https://doi.org/10.1080/00288330.2003.9517192
  9. Hentschel, U., Hopke, J., Horn, M., Friedrich, A.B., Wagner, M., Hacker, J., and Moore, B.S. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68, 4431-4440. https://doi.org/10.1128/AEM.68.9.4431-4440.2002
  10. Imhoff, J.F. 2001. True marine and halophilic anoxygenic phototrophic bacteria. Arch. Microbiol. 176, 243-254. https://doi.org/10.1007/s002030100326
  11. Jackson, S.A., Kennedy, J., Morrissey, J.P., O'Gara, F., and Dobson, A.D. 2012. Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microb. Ecol. 64, 105-116. https://doi.org/10.1007/s00248-011-0002-x
  12. Jeong, I.H., Kim, K.H., and Park, J.S. 2013. Analysis of bacterial diversity in sponges collected off Chujado, an Island in Korea, using barcoded 454 pyrosequencing: Analysis of a distinctive sponge group containing Chloroflexi. J. Microbiol. 51, 570-577. https://doi.org/10.1007/s12275-013-3426-9
  13. Kennedy, J., Baker, P., Piper, C., Cotter, P.D., Walsh, M., Mooij, M.J., Bourke, M.B., Rea, M.C., O'Connor, P.M., Ross, R.P., and et al. 2009. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish Waters. Mar. Biotechnol. 11, 384-396. https://doi.org/10.1007/s10126-008-9154-1
  14. Lau, W.W.Y., Jumars, P.A., and Armbrust, E.V. 2002. Genetic diversity of attached bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea (formerly Callianassa) californiensis (Decapoda:Thalassinidae). Microb. Ecol. 43, 455-466. https://doi.org/10.1007/s00248-001-1043-3
  15. Li, C.W., Chen, J.Y., and Hua, T.E. 1998. Precambrian sponges with cellular structures. Science 279, 879-882. https://doi.org/10.1126/science.279.5352.879
  16. Li, Z., Hu, Y., Liu, Y., Huang, Y., He, L., and Miao, X. 2007. 16S rDNA clone library-based bacterial phylogenetic diversity associated with three South China Sea sponges. World J. Microbiol. Biotechnol. 23, 1265-1272. https://doi.org/10.1007/s11274-007-9359-x
  17. Newman, D.J. and Cragg, G.M. 2004. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67, 1216-1238. https://doi.org/10.1021/np040031y
  18. Olson, J.B. and McCarthy, P.J. 2005. Associated bacterial communities of two deep-water sponges. Aquat. Microb. Ecol. 39, 47-55. https://doi.org/10.3354/ame039047
  19. Park, J.S. 2010. Bacterial community diversity associated with two marine sponges from the South Pacific Ocean based on 16S rDNA-DGGE analysis. Kor. J. Microbiol. 46, 255-261.
  20. Piel, J. 2009. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338-362. https://doi.org/10.1039/b703499g
  21. Ridley, C.P., Faulkner, D.J., and Haygood, M.G. 2005. Investigation of Oscillatoria spongeliae-dominated bacterial communities in four Dictyoceratid sponges. Appl. Environ. Microbiol. 71, 7366-7375. https://doi.org/10.1128/AEM.71.11.7366-7375.2005
  22. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  23. Schottner, S., Hoffmann, F., Cardenas, P., Rapp, H.T., Boetius, A., and Ramette, A. 2013. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS One 8, e5550.
  24. Sekiguchi, H., Koshikawa, H., Hiroki, M., Murakami, S., Xu, K., Watanabe, M., Nakahara, T., Zhu, M., and Uchiyama, H. 2002. Bacterial distribution and phylogenetic diversity in the Changjiang estuary before the construction of the three gorges dam. Microb. Ecol. 43, 82-91. https://doi.org/10.1007/s00248-001-0034-8
  25. Stouthamer, R., Breeuwer, J.A.J., and Hurst, G.D.D. 1999. Wolbachiapipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53, 71-102. https://doi.org/10.1146/annurev.micro.53.1.71
  26. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  27. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  28. Wagner-Dobler, I., Beil, W., Lang, S., Meiners, M., and Laatsch, H. 2002. Integrated approach to explore the potential of marine microorganisms for the production of bioactive metabolites. Adv. Biochem. Eng. Biotechnol. 74, 207-238.
  29. Wang, Z., Ling, B., Zhang, R., Suo, Y., Liu, Y., Yu, Z., and Liu, C. 2009. Docking and molecular dynamics studies toward the binding of new natural phenolic marine inhibitors and aldose reductase. J. Mol. Graph. Model. 28, 162-169. https://doi.org/10.1016/j.jmgm.2009.06.003
  30. Webster, N.S., Negri, A.P., Munro, M.M., and Battershill, C.N. 2004. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6, 288-300. https://doi.org/10.1111/j.1462-2920.2004.00570.x
  31. Weidner, S., Arnold, W., Stackebrandt, E., and Puhler, A. 2000. Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach. Microb. Ecol. 39, 22-31. https://doi.org/10.1007/s002489900194
  32. White, J.R., Patel, J., Ottesen, A., Arce, G., Blackwelder, P., and Lopez, J.V. 2012. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS One 7, e38204. https://doi.org/10.1371/journal.pone.0038204

Cited by

  1. Marine sponge aquaculture towards drug development: An ongoing history of technical, ecological, chemical considerations and challenges vol.21, pp.None, 2013, https://doi.org/10.1016/j.aqrep.2021.100813