DOI QR코드

DOI QR Code

Phylogenetic diversity of bacterial community associated with the tropical marine sponges, Cinachyrella sp. and Plakortis sp.

열대 해양 해면 Cinachyrella sp.와 Plakortis sp.의 공생세균 군집의 계통학적 다양성

  • Jeong, Jong-Bin (Department of Biological Science and Biotechnology, Hannam University) ;
  • Park, Jin-Sook (Department of Biological Science and Biotechnology, Hannam University)
  • 정종빈 (한남대학교 생명시스템과학과) ;
  • 박진숙 (한남대학교 생명시스템과학과)
  • Received : 2015.03.03
  • Accepted : 2015.03.25
  • Published : 2015.03.31

Abstract

The bacterial community structures of two marine sponges, Cinachyrella sp. and Plakortis sp., collected from Chuuk in the South Pacific in February 2012 were analyzed by PCR-DGGE (Denaturing Gradient Gel Electrophoresis) fingerprinting. After isolation of the total genomic DNAs from the sponges, the V3 regions of the 16S rRNA genes were amplified and subjected to DGGE profiling. The two species of sponges displayed different DGGE band patterns. The sequences derived from the DGGE bands revealed 85-100% similarities to known bacterial species in the public database. The bacterial community of Cinachyrella sp. was composed of 6 classes: Actinobacteria, Bacteroidetes, Chloroflexi, and Proteobacteria (Alpha-, Gamma-, Delta-). The bacterial community of Plakortis sp. included 7 classes: Actinobacteria, Chloroflexi, Firmicutes, Spirochaetes, and Proteobacteria (Alpha-, Gamma-, Delta-). Though Actinobacteria, Chloroflexi and Proteobacteria were commonly found in both sponges, the predominant bacterial communities differed between the two. Namely, the predominant bacterial groups in Cinachyrella sp. and Plakortis sp. were Proteobacteria and Chloroflexi, respectively. The sponge-associated bacteria are sponge host-specific, as each of the tested sponges from the same geographical location had different predominant bacterial diversity.

2012년 2월 남태평양 미크로네시아 축(Chuuk)에서 채집한 두 종의 해양해면 Cinachyrella sp.와 Plakortis sp.의 공생세균의 군집구조를 PCR-DGGE 방법을 사용하여 조사하였다. Cinachyrella sp.와 Plakortis sp. 해면의 total genomic DNA에서 16S rRNA gene-V3 부분을 증폭하여 DGGE를 수행하였으며, 두 종의 해면에서 서로 다른 밴드 패턴이 나타났다. DGGE밴드로부터 16S rRNA gene의 부분 염기서열을 분석한 결과, 알려진 균주의 염기서열들과 87-100%의 유사도를 나타내었다. Cinachyrella sp.의 공생세균 군집구조는 Actinobacteria, Bacteroidetes, Chloroflexi, 그리고 Proteobacteria (Alpha-, Gamma-, Delta-), 6강으로 구성되었다. Plakortis sp.의 공생세균 군집구조는 Actinobacteria, Chloroflexi, Firmicutes, Spirochaetes 그리고 Proteobacteria (Alpha-, Gamma-, Delta-), 7강으로 구성되었다. 두 종의 해면에서 Actinobacteria, Chloroflexi와 Proteobacteria가 공통적으로 존재하였으나 주요 세균군집은 서로 다른 것으로 나타났다. 즉 Cinachyrella sp.의 경우 Proteobacteria가, Plakortis sp.의 경우, Chloroflexi가 주요 세균 군집이었다. 동일지역에서 채집한 서로 다른 두 종의 해면은 각각 다른 공생세균 군집구조를 나타내어 해면 종에 따른 숙주 특이적 분포를 보이는 것으로 나타났다.

Keywords

References

  1. Bauvais, C., Zirah, S., Piette, L., Chaspoul, F., Domart-Coulon, I., Chapon, V., Gallice, P., Rebuffat, S., Perez, T., and Bourguet-Kondracki, M.L. 2015. Sponging up metals: Bacteria associated with the marine sponge Spongia officinalis. Mar. Environ. Res. 104, 20-30. https://doi.org/10.1016/j.marenvres.2014.12.005
  2. Brock, T.D., Madigen, M.T., Martinko. J.M., and Parker, J. 1984. Biology of microbiology. Prentice Hall, International (UK) London.
  3. Bruck, W.M., Reed, J.K., and McCarthy, P.J. 2012. The bacterial community of the lithistid sponge Discodermia spp. as determined by cultivation and culture-independent methods. Mar. Biotechnol. 14, 762-773. https://doi.org/10.1007/s10126-012-9443-6
  4. Cho, H.H., Shim, E.J., and Park, J.S. 2010. Phylogenetic diversity of bacteria associated with the marine sponges, Spirastrella abata and Cinachyrella sp. Kor. J. Microbiol. 46, 177-182.
  5. Cottrell, M.T. and Kirchman, D.L. 2000. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 1692-1697. https://doi.org/10.1128/AEM.66.4.1692-1697.2000
  6. Cuvelier, M.L., Blake, E., Mulheron, R., McCarthy, P.J., Blackwelder, P., Thurber, R.L.V., and Lopez, J.V. 2014. Two distinct microbial communities revealed in the sponge Cinachyrella. Front. Microbiol. 4, doi: 10.3389/fmicb.2014.00581.
  7. Della Sala, G., Hochmuth, T., Teta, R., Costantino, V., and Mangoni, A. 2014. Polyketide synthases in the microbiome of the marine sponge Plakortis halichondrioides: A metagenomic update. Mar. Drugs 12, 5425-5440. https://doi.org/10.3390/md12115425
  8. Dupont, S., Carre-Mlouka, A., Descarrega, F., Ereskovsky, A., Longeon, A., Mouray, E., Florent, I., and Bourguet-Kondracki, M.L. 2014. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae). Lett. Appl. Microbiol. 58, 42-52. https://doi.org/10.1111/lam.12154
  9. Dupont, S., Corre, E., Li, Y., Vacelet, J., and Bourguet-Kondracki, M.L. 2013. First insights into the microbiome of a carnivorous sponge. FEMS Microbiol. Ecol. 86, 520-531. https://doi.org/10.1111/1574-6941.12178
  10. Haber, M. and Ilan, M. 2014. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp. sponges. J. Appl. Microbiol. 116, 519-532. https://doi.org/10.1111/jam.12401
  11. Hardoim, C.C., Costa, R., Araujo, F.V., Hajdu, E., Peixoto, R., Lins, U., Rosado, A.S., and van Elsas, J.D. 2009. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl. Environ. Microbiol. 75, 3331-3343. https://doi.org/10.1128/AEM.02101-08
  12. Hentschel, U., Usher, K.M., and Taylor, M.W. 2006. Marine sponges as microbial fermenters. FEMS Microbiol. Ecol. 55, 167-177. https://doi.org/10.1111/j.1574-6941.2005.00046.x
  13. Imamura, N., Nishijima, M., Adachi, K., and Sano, H. 1993. Novel antimycin antibiotics, urauchimycins A and B, produced by marine actinomycete. J. Antibiot. 46, 241-246. https://doi.org/10.7164/antibiotics.46.241
  14. Kennedy, J., Baker, P., Piper, C., Cotter, P.D., Walsh, M., Mooij, M.J., Bourke, M.B., Rea, M.C., O'Connor, P.M., Ross, R.P., et al. 2009. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish Waters. Mar. Biotechnol. 11, 384-396. https://doi.org/10.1007/s10126-008-9154-1
  15. Khan, S.T., Takagi, M., and Shin-ya, K. 2012. Actinobacteria associated with the marine sponges Cinachyra sp., Petrosia sp., and Ulosa sp. and their culturability. Microbes Environ. 27, 99-104. https://doi.org/10.1264/jsme2.ME11270
  16. Lee, O.O., Wang, Y., Yang, J., Lafi, F.F., Al-Suwailem, A., and Qian, P.Y. 2010. Pyrosequencing reveals highly diverse and speciesspecific microbial communities in sponges from the Red Sea. ISME J. 5, 650-664.
  17. Machida, K., Abe, T., Arai, D., Okamoto, M., Shimizu, I., de Voogd, N.J., Fusetani, N., and Nakao, Y. 2014. Cinanthrenol A, an estrogenic steroid containing phenanthrene nucleus, from a marine sponge Cinachyrella sp. Org. Lett., 16, 1539-1541. https://doi.org/10.1021/ol5000023
  18. O'Sullivan, L.A., Rinna, J., Humphreys, G., Weightman, A.J., and Fry, J.C. 2006. Culturable phylogenetic diversity of the phylum 'Bacteroidetes' from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 56, 169-180. https://doi.org/10.1099/ijs.0.63941-0
  19. Oh, J.S., Hwang, B.S., Kang, O.H., Kwon, D.Y., and Rho, J.R. 2013. New constituents from the Korean sponge Plakortis simplex. Mar. Drugs 11, 4407-4418. https://doi.org/10.3390/md11114407
  20. Park, J.S. 2010. Bacterial community diversity associated with two marine sponges from the South Pacific Ocean based on 16S rDNA-DGGE analysis. Kor. J. Microbiol. 46, 255-261.
  21. Poppell, E., Weisz, J., Spicer, L., Massaro, A., Hill, A., and Hill, M. 2014. Sponge heterotrophic capacity and bacterial community structure in high-and low-microbial abundance sponges. Mar. Ecol. 35, 414-424. https://doi.org/10.1111/maec.12098
  22. Radwan, M., Hanora, A., Zan, J., Mohamed, N.M., Abo-Elmatty, D.M., Abou-El-Ela, S.H., and Hill, R.T. 2010. Bacterial community analyses of two Red Sea sponges. Mar. Biotechnol. 12, 350-360. https://doi.org/10.1007/s10126-009-9239-5
  23. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  24. Shimogawa, H., Kuribayashi, S., Teruya, T., Suenaga, K., and Kigoshi, H. 2006. Cinachyramine, the novel alkaloid possessing a hydrazone and two aminals from Cinachyrella sp. Tetrahedron Lett. 47, 1409-1411. https://doi.org/10.1016/j.tetlet.2005.12.087
  25. Sun, W., Dai, S., Jiang, S., Wang, G., Liu, G., Wu, H., and Li, X. 2010. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie van Leeuwenhoek. 98, 65-75. https://doi.org/10.1007/s10482-010-9430-8
  26. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  27. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  28. Wang, G. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545-551. https://doi.org/10.1007/s10295-006-0123-2
  29. Wang, X., Brandt, D., Thakur, N.L., Wiens, M., Batel, R., Schroder, H.C., and Muller, W.E. 2013. Molecular cross-talk between sponge host and associated microbes. Phytochem. Rev. 12, 369-390. https://doi.org/10.1007/s11101-012-9226-8
  30. Zhang, F., Pita, L., Erwin, P., Abid, S., Lopez-Legentil, S., and Hill, R. 2014. Symbiotic archaea in marine sponges show stability and host specificity in community structure and ammonia oxidation functionality. FEMS Microbiol. Ecol. 90, 699-707. https://doi.org/10.1111/1574-6941.12427