• Title/Summary/Keyword: DC.Amplifier

Search Result 317, Processing Time 0.095 seconds

The design of the high efficiency DC-DC Converter with Dynamic Threshold MOS switch (Dynamic Threshold MOS 스위치를 사용한 고효율 DC-DC Converter 설계)

  • Ha, Ka-San;Koo, Yong-Seo;Son, Jung-Man;Kwon, Jong-Ki;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • The high efficiency power management IC(PMIC) with DTMOS(Dynamic Threshold voltage MOSFET) switching device is proposed in this paper. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. DTMOS with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuits consist of a saw-tooth generator, a band-gap reference circuit, an error amplifier and a comparator circuit as a block. The Saw-tooth generator is made to have 1.2 MHz oscillation frequency and full range of output swing from ground to supply voltage(VDD:3.3V). The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on Voltage-mode PWM control circuits and low on-resistance switching device, achieved the high efficiency near 95% at 100mA output current. And DC-DC converter is designed with LDO in stand-by mode which fewer than 1mA for high efficiency.

  • PDF

Research on PAE and Linearity of Power Amplifier Using Adaptive Bias and PBG Structure (적응형 바이어스와 PBG를 이용한 전력증폭기 전력효율과 선형성 개선에 관한 연구)

  • Cho Sunghee;Seo Chulhun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.87-92
    • /
    • 2005
  • In this paper, adaptive bias circuit and PBG structure have been employed to suppress IMD and improve PAE (Power Added Efficiency) of the power amplifier. It is controlling the gate 'dc' bias voltage with the envelope of the input RF signal. and The PBG structure has been employed on the output port of power amplifier . The proposed power amplifier using adaptive bias circuit and PBG has been improved the IMG by 3 dBc, and the average PAE by $35.54\%$, respectively.

Design and Performance Evaluation of DC Generator Control System for Cortrolling Torque of Rotating Shaft (회전축의 정밀 토그 발생용 직류 발전기 제어장치의 설계 및 성능평가에 관한 연구)

  • Kim, G.S.;Kang, D.I.;Ahn, B.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.50-56
    • /
    • 1994
  • A DC generator control system was designed to control the torque of a rotating shaft precisely. The control system is composed of a strain gage type torque cell, a torque cell amplifier, a computer, a D/A converter, a error detector, a DC voltage amplifier and a resistor. The response test under unit step input and the dynamic stability test for the designed control system were carried out. It was confirmed that the settling time from the response test is about 4 s and the error from the dynamic stability test is less than 0.06% of rated output of torque cell. The designed control system may be used to control a DC generator which may be used to apply torque to a rotating shaft.

  • PDF

A Study on the Design of DC Amplifier (DC증폭기의 설계방법에 관한 연구)

  • 이종각
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.2
    • /
    • pp.43-46
    • /
    • 1975
  • In a chopper amplifier the input signal of the AC amplifier is a train of square-waves. In the rase of square-wave the operatiom of AC amplifier is much different from that of ordinary sinusoidal wave. In this paper for the purpose of contributing to the design of chopper amplifier destortions of waveforms in the amplifier were investigated. When the time constant of each stage is equal the waveform in each stave apppears as square wave whose top is exponentially decaying. And when each stave has different time constant the waveform in n-th stage is composed of n-square waves whose tops are exponentially decaying.

  • PDF

DC ∼ 45 GHz CPW Wideband Distributed Amplifier Using MHEMT (MHEMT를 이용한 DC ∼ 45 GHz CPW 광대역 분산 증폭기 설계 및 제작)

  • Jin Jin-Man;Lee Bok-Hyung;Lim Byeong-Ok;An Dan;Lee Mun-Kyo;Lee Sang-Jin;Ko Du-Hyun;Beak Yong Hyun;Oh Jung-Hun;Chae Yeon-Sik;Park Hyung-Moo;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.7-12
    • /
    • 2004
  • In this paper, CPW wideband distributed amplifier was designed and fabricated using 0.1 $\mum$ InGaAs/InAlAs/GaAs Metamorphic HEMT(High Electron Mobility Transistor). The DC characteristics of MHEMT are 442 mA/mm of drain current density, 409 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 140 GHz and the maximum oscillation frequency(fmax) is 447 GHz. The distributed amplifier was designed using 0.1 $\mum$ MHEMT and CPW technology. We designed the structure of CPW curve, tee and cross to analyze the discontinuity characteristics of the CPW line. The MIMIC circuit patterns were optimized electromagnetic field through momentum. The designed distributed amplifier was fabricated using our MIMIC standard process. The measured results show S21 gain of above 6 dB from DC to 45 GHz. Input reflection coefficient S11 of -10 dB, and output reflection coefficient S22 of -7 dB at 45 GHz, respectively. The chip size of the fabricated CPW distributed amplifier is 2.0 mm$\times$l.2 mm.

New Programmable RF DFT Circuit for Low Noise Amplifiers (LNA를 위한 새로운 프로그램 가능 고주파 검사용 설계회로)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.28-39
    • /
    • 2007
  • This paper presents a programmable RF DFT (Radio Frequency Design-for-Testability) circuit for low noise amplifiers. We have developed a new on-chip RF DFT circuit that measures RF parameters of low noise amplifier (LNA) using only DC measurements [1, 2]. This circuit is extremely useful for today's RFIC devices in a complete RF transceiver environment. The DFT circuit contains test amplifier with programmable capacitor banks and RF peak detectors. The test circuit utilizes output DC voltage measurements and these measured values are translated into the LNA specifications such as input impedance and gain using the mathematical equations. Our on-chip DFT circuit can be self programmed for 1.8GHz, 2.4GHz and 5.25GHz low noise amplifiers for GSM, Bluetooth and IEEE802.11g standards. The circuit is simple and inexpensive.

The design of high efficiency DC-DC Converter with ESD protection device for Mobile application (모바일 기기를 위한 ESD 보호 소자 내장형 고효율 DC-DC 컨버터 설계)

  • Ha, Ka-San;Son, Jung-Man;Shin, Samuell;Won, Jong-Il;Kwak, Jae-Chang;Koo, Yong-Seo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.565-566
    • /
    • 2008
  • The high efficiency power management IC(PMIC) for Moblie application is proposed in this paper. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. The saw-tooth generator is made to have 1.2 MHz oscillation frequency and full range of output swing from ground to supply voltage(VDD:3.3V). The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on Voltage-mode PWM control circuits, achieved the high efficiency near 95% at 100mA output current. DC-DC converter is designed with LDO in stand-by mode which fewer than 1mA for high efficiency.

  • PDF

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

A Robust PLL Technique Based on the Digital Lock-in Amplifier under the Non-Sinusoidal Grid Conditions (디지털 록인앰프를 이용한 비정현 계통하에서 강인한 PLL 방법)

  • Ashraf, Muhammad Noman;Khan, Reyyan Ahmad;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.104-106
    • /
    • 2018
  • The harmonics and the DC offset in the grid can cause serious synchronization problems for grid connected inverters (GCIs) which leads not able to satisfy the IEEE 519 and p1547 standards in terms of phase and frequency variations. In order to guarantee the smooth and reliable synchronization of GCIs with the grid, Phase Locked Loop (PLL) is the crucial element. Typically, the performance of the PLL is assessed to limit the grid disturbances e.g. grid harmonics, DC Offset and voltage sag etc. To ensure the quality of GCI, the PLL should be precise in estimating the grid amplitude, frequency and phase. Therefore, in this paper a novel Robust PLL technique called Digital Lock-in Amplifier (DLA) PLL is proposed. The proposed PLL estimate the frequency variations and phase errors accurately even in the highly distorted grid voltage conditions like grid voltage harmonics, DC offsets and grid voltage sag. To verify the performance of proposed method, it is compared with other six conventional used PLLs (CCF PLL, SOGI PLL, SOGI LPF PLL, APF PLL, dqDSC PLL, MAF PLL). The comparison is done by simulations on MATLAB Simulink. Finally, the experimental results are verified with Single Phase GCI Prototype.

  • PDF

Performance of X-Band Amplifier with Coupling Method (X-band 증폭기의 결합방법에 따른 특성 비교)

  • 조광래;윤현보;진연강
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.3
    • /
    • pp.216-220
    • /
    • 1988
  • The design and performance of 12GHz low-noise amplifierwith GaAs MESFET and microstrip line are described. It contains DC blocks with symmetric line and chip capacitor, respectively. The low-noise amplifier with chip capacitor and DC block exhibits a 8-11 dB gain over 11.8-12.1 GHz and 16-18dB gain over 12.16-12.19GHz, respectively.

  • PDF