• Title/Summary/Keyword: DC reactive sputtering

Search Result 196, Processing Time 0.026 seconds

A Study on the Metal Mesh for CuNx-Cu-CuNx Multi-layer Touch Electrode by Reactive Magnetron Sputtering (Reactive Magnetron Sputtering 적용 CuNx-Cu-CuNx 적층형 Metal Mesh 터치센서 전극 특성 연구)

  • Kim, Hyun-Seok;Yang, Seong-Ju;Noh, Kyeong-Jae;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.414-423
    • /
    • 2016
  • In the present study, the $CuN_x-Cu-CuN_x$ layer the partial pressure ratio Cu metal of Ar and $N_2$ gas using a DC magnetron sputtering device, was generated by the In-situ method. $CuN_x$ layer was able to obtain a surface reflectance reduction effect from the advantages of the process and the external light. $CuN_x$ layer is gas partial pressure, DC the Power, the deposition time variable transmittance in response to the thickness and partial pressure ratio, the reflectance was measured. $Ar:N_2$ gas ratio 10:10(sccm), DC power 0.35 A, was derived Deposition time 90 sec optimum conditions. Thus, according to the optimal thickness and the composition ratio was derived surface reflectance of 20.75%. In addition, to derive the value of ${\Delta}$ Ra surface roughness of 0.467. It was derived $CuN_x$ band-gap energy of about 2.2 eV. Thus, to ensure a thickness and process conditions can be absorbed to maximize the light in a wavelength band in the visible light region. As a result, the implementation of the $12k{\Omega}$ base line resistance of using the Cu metal. This is, 5 inch Metal mesh TSP(L/S: $4/270{\mu}m$) is in the range of the reference operation.

Effect of heat treatment on the electrical and optical properties of ZnO : Al thin films prepared by reactive magnetron sputtering method (반응성 sputtering법으로 제막된 ZnO : Al 박막의 전기.광학적 특성에 미치는 열처리의 영향)

  • 유세웅;유병석;이정훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.493-500
    • /
    • 1996
  • AZO transparent conducting thin films were fabricated by reactive DC magnetron sputtering method using Zn metla target containing 2 wt% of Al, and electrical and optical properties were investigated after heattreatment. Electrical resistivity was reduced 50% and had reached $1{\times}10^{-3}~3.5{\times}10^{-4}\;{\Omega}cm$ by heat treatment. In the case of oxide AZO films, the resistivity of $10^{3}\;{\Omega}cm$ was also decreased to $2{\times}10^{-3}\;{\Omega}cm$ after heat treatment. The optical transmittance of AZO films deposited in the transition range was increased from 59.4 % to 77.4 % by $400^{\circ}C$, 30 min heat treatment.

  • PDF

마그네트론 스퍼터링을 이용하여 TiN 박막을 증착한 도전성 섬유

  • Jang, Jin-Hyeok;Mun, Seon-U;Kim, Gyeong-Hun;Kim, Seong-Min;Lee, Seung-Min;Kim, Jeong-Su;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.168-168
    • /
    • 2013
  • 도전성 섬유(Conductive textile)는 섬유자체의 고유 특성을 유지하면서 전기적인 도전 특성을 갖는 섬유로서, Cu, Ag, Ni 등의 전기전도성이 높은 금속 박막을 증착하여 제작하고 있다. 그러나, 이러한 금속은 공기 중의 산소와 결합하여 쉽게 산화되는 특성을 지니고 있기 때문에 사용 중에 산화되어 도전 특성이 감소하는 단점이 있다. TiN은 금속 못지않은 높은 전기전도성을 지니고 있을 뿐만 아니라, 금속에 비하여 높은 경도에 따른 우수한 내마모 특성, 내부식성 및 낮은 마찰계수를 지니고 있다. 그러나, TiN은 경도가 높기 때문에 섬유의 고유 특성인 유연성이 저하되는 문제가 있다. 본 연구에서는 면(Cotton), PE (Polyester), PP (Polypropylene) 등의 섬유 위에 TiN 박막을 증착하여, 섬유의 유연성을 유지하며 전기전도성과 내마모 특성이 우수한 도전성 섬유를 제작하고자 하였다. TiN 박막 증착을 위하여 ICP-assisted pulsed-DC reactive magnetron sputtering 장비를 사용하였으며, Ar:N2 유량비(Flow rate), Ti 타겟 power, ICP RF power 등을 변화시켜 Ti와 N의 조성비를 조절하였고, 이를 통하여 섬유의 휨이나 접힘에도 도전 특성이 변하지 않고 내마모 특성이 우수한 TiN 박막을 증착하였다. TiN 박막이 증착된 섬유의 전기전도도는 일정한 압력 하에 전기전도도를 측정할 수 있는 장치를 제작하여 측정하였으며, 표면 조성 분포 및 접합력 측정을 위하여 XPS (X-ray Photoelectron Spectroscopy)와 Peel-tester를 이용하였다.

  • PDF

Characteristic Changes of ITO/PET Thin Films with Ratio of Oxygen Partial Pressure (산소분압비에 따른 ITO/PET박막의 특성변화)

  • Kim, Hyun-Hoo;Lee, Moo-Young;Kim, Kwang-Tae;Yoon, Shang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.58-61
    • /
    • 2003
  • ITO (indium tin oxide) thin films on PET (polyethylene terephthalate) substrate have been deposited by a dc reactive magnetron sputtering without heat treatments such as substrate heater and post heat treatment. Each sputtering parameter during the sputtering deposition is an important factor for the high quality of ITO thin films deposited on polymeric substrate. Particularly, the material, electrical and optical properties of as-deposited ITO oxide films are dominated by the ratio of oxygen partial pressure. As the experimental results, the excellent ITO films are prepared on PET substrate at the operating conditions as follows: operating pressure of 5 mTorr,target-substrate distance of 45 mm, dc power of 20-30 W, and oxygen gas ratio of 10 %. The optical transmittance is above 80 % at 550 nm, and the sheet resistance and resistivity of films are $24\;{\Omega}$/square and $1.5{\times}10^{-3}\;cm$, respectively.

  • PDF

Deposition of Al Doped ZnO Films Using ICP-assisted Sputtering on the Plastic Substrate (유도결합 플라즈마 스퍼터링을 이용한 플라스틱 기판 상의 Al이 도핑된 ZnO 박막 증착)

  • Jung, Seung-Jae;Han, Young-Hun;Lee, Jung-Joong
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.98-104
    • /
    • 2006
  • Al-doped ZnO (AZO) films were deposited on the plastic substrate by inductively coupled plasma (ICP) assisted DC magnetron sputtering. The AZO films were produced by sputtering a metallic target (Zn/Al) in a mixture of argon and oxygen gases. AZO films with an electrical resistivity of ${\sim}10^3\;{\Omega}cm$ and an optical transmittance of 80% were obtained even at a low deposition temperature. In-situ process control methods were used to obtain stable deposition conditions in the transition region without any hysteresis effect. The target voltage was controlled either at a constant DC power. It was found that the ratio of the zinc to oxygen emission intensity, I (O 777)/I (Zn 481) decreased with increasing the target voltage in the transition region. The $Ar/O_2$ plasma treatment improve the adhesion strength between the polycarbonate substrate and AZO films.

RF Bias Effect of ITO Thin Films Reactively Sputtered on PET Substrates at Room Temperature

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.122-125
    • /
    • 2004
  • ITO films were deposited on polyethylene terephthalate substrate by a dc reactive magnetron sputtering using rf bias without substrate heater and post-deposition thermal treatment. The dependency of rf substrate bias on plasma sputter processing was investigated to control energetic particles and improve ITO film properties. The substrate was applied negative rf bias voltage from 0 to -80 V. The composition of indium, tin, and oxygen atoms is strongly depended on the rf substrate bias. Oxygen deficiency is the highest at rf bias of -20 V. The electrical and optical properties of ITO films also are dominated obviously by negative rf bias.

Deposition of PbTio3 thin films by reactive sputtering

  • Ahn, Y.S.;Lee, D.S.;Ahn, E.J.;Yoon, E.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.126-129
    • /
    • 1999
  • PbTio3 is a promising material with perovskite structure for pyroelectric sensor applications with its superior pyroelectric properties, low dielectric constants, and low piezoelectric constants. Growth of pyroelectric thin films in general, needs relatively higher temperatures than those of conventional Si semiconductor processing However, low growth temperature is advantageous for the device integration. We report the low temperature (350$^{\circ}C$) growth of PbTio3 thin films by 3-gun DC magnetron reactive sputtering. The effects of substrate temperature, Pb-flux, and total pressure on crystalinity and preferred orientation of PbTio3 thin films are reported.

  • PDF

Preparation of Paraelectric PLT Thin Films Using Reactive Magnetron Sputtering of Multicomponent Metal Target

  • Kim, H.H.;Sohn, K.S.;Casas, L.M.;Pfeffer, R.L.;Lareau, R.T.
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.53-59
    • /
    • 1998
  • Paraelectric lead landthanum titanate(PLT) thin films have been prepared by a reactive dc magnetron sputtering system using a multicomponent metal target. The surface area control of each element on the target markedly facilitates the fabrication of thin films of complex ceramic compounds. A postdeposition heat-treatment was applied to all as-deposited PLT thin films at annealing temperatures up to 75$0^{\circ}C$ for crystalization. The composition of the PLT(28) thin filmannealed at $650^{\circ}C$ was: Pb, 0.73; La, 0.28; Ti, 0.88; O, 2.9. The dielectric constant and dissipation factor of the thin film(200 nm) at low filed measurements (500 Vcm-1) are 1216 and 0.018, respectively. The charge storage density using a typical Sawyer-Tower circuit with a 500 Hz sine wave was 12.5 $\mu$Ccm-2 at the electric field of 200 kVcm-1.

  • PDF

High-temperature oxidation resistance of Ti-Si-N coating layers prepared by DC magnetron sputtering method (DC magnetron sputtering법으로 제조된 Ti-Si-N코팅막의 내산화성에 관한 연구)

  • Choi, Jun-Bo;Ryu, Jung-Min;Cho, Gun;Kim, Kwang-Ho;Lee, Mi-Hye
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.415-421
    • /
    • 2002
  • Ti-Si-N coating layers were codeposited on silicon wafer substrates by a DC reactive magnetron sputtering technique using separate titanium and silicon targets in $N_2$/Ar gas mixtures. The oxidation behavior of Ti-Si-N coating layers containing 4.0 at.%, 10.0 at.%, and 27.3 at.% Si was investigated at temperatures ranging from 600 to $960^{\circ}C$. The coating layers containing 4.0 at.% Si became fast oxidized from $600^{\circ}C$ while the coating layers containing 10.0 at.% Si had oxidation resistance up to $800^{\circ}C$. It was concluded that an increase in Si content to a level of 10.0 at.% led to the formation of finer TiN grains and a uniformly distributed amorphous Si3N4 phase along grain boundaries, which acted as efficient diffusion barriers against oxidation. However, the coating layers containing 27.3 at.% Si showed relatively low oxidation resistance compared with those containing 10.0 at.% Si. This phenomenon would be explained by the existence of free Si which was not nitrified in the coating layers containing 27.3 at.% Si.