Browse > Article

High-temperature oxidation resistance of Ti-Si-N coating layers prepared by DC magnetron sputtering method  

Choi, Jun-Bo (School of Materials Science and Engineering, Pusan National University)
Ryu, Jung-Min (School of Materials Science and Engineering, Pusan National University)
Cho, Gun (School of Materials Science and Engineering, Pusan National University)
Kim, Kwang-Ho (School of Materials Science and Engineering, Pusan National University)
Lee, Mi-Hye (Technology Appraisal Center, Korea Technology Credit Gurantee Fund)
Publication Information
Journal of the Korean institute of surface engineering / v.35, no.6, 2002 , pp. 415-421 More about this Journal
Abstract
Ti-Si-N coating layers were codeposited on silicon wafer substrates by a DC reactive magnetron sputtering technique using separate titanium and silicon targets in $N_2$/Ar gas mixtures. The oxidation behavior of Ti-Si-N coating layers containing 4.0 at.%, 10.0 at.%, and 27.3 at.% Si was investigated at temperatures ranging from 600 to $960^{\circ}C$. The coating layers containing 4.0 at.% Si became fast oxidized from $600^{\circ}C$ while the coating layers containing 10.0 at.% Si had oxidation resistance up to $800^{\circ}C$. It was concluded that an increase in Si content to a level of 10.0 at.% led to the formation of finer TiN grains and a uniformly distributed amorphous Si3N4 phase along grain boundaries, which acted as efficient diffusion barriers against oxidation. However, the coating layers containing 27.3 at.% Si showed relatively low oxidation resistance compared with those containing 10.0 at.% Si. This phenomenon would be explained by the existence of free Si which was not nitrified in the coating layers containing 27.3 at.% Si.
Keywords
Ti-Si-N coating layers; DC magnetron sputtering; Oxidation resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Cselle and A. Barimani : Surf. Coat. Technol., 76-77 (1995) 712   DOI
2 M. Wittmer, J. Noser and H. Melchior : J. Appl. Phys., 52(11) (1981)6659   DOI   ScienceOn
3 W. D. Munz : J. Vac. Sci. Technol A4(6) (1986) 2717
4 O. Knotek, M. Bohmer and T. Leyendecker : J. Vac. Sci. Technol., A4(6) (1986) 2695
5 M. Diserens, J. Patscheider and F. Levy : Surf. Coat. Technol., 120-121 (1999) 158   DOI   ScienceOn
6 F. Vaz, L. Rebouta, M. Andritschky, M. F. daSilva and J. C. Soares : J. Mat. Proc. Technol., 92-93 (1999) 169   DOI   ScienceOn
7 J. Patscheider, T. Zehnder and M. Diserens : Surf. Coat. Technol., 146-147 (2001) 201   DOI   ScienceOn
8 G. Llauro, F. Goubilleau, F. Sibieude and R Hillel : Thin Solid Films 315 (1998) 336   DOI   ScienceOn
9 A. Joshi and H. S. Hu : Surf. Coat. Technol.,76-77 (1995) 409
10 S. Veprek and S. Reiphch : Thin Solid Films, 268 (1995) 64   DOI   ScienceOn
11 T. Kacsich, S. M. Gasser, C. Garland and M. ANicolet : Surf. Coat. Technol., 124 (2000) 162   DOI   ScienceOn
12 F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H Garem, J. P. Riviere, A. Cavaleiro and E. Alves : Surf. Coat. Technol., 133-134 (2000) 307   DOI   ScienceOn
13 S. Veprek, M. Haussmann, S. Reiphch, L. Shi-zhi and J. Dian : Surf. Coat. Technol., 86-87(1996) 394   DOI   ScienceOn
14 D. Mclntyre, J. E. Greene, G. Hakansson and J. E. Sundgren : J. Appl. Phys., 67(3) (1990) 1542   DOI
15 J. W. He, C. D. Bai, K, W. Xu and N. S. Hu : Surf. Coat. Technol., 74-75 (1995) 387   DOI   ScienceOn
16 K. H. Kim and B. H. Park : Chemical Vapor Deposition,5(6) (1999)275   DOI
17 T. Kacsich and M. A. Nicolet : Thin Solid Films, 349 (1999) 1   DOI   ScienceOn