High-temperature oxidation resistance of Ti-Si-N coating layers prepared by DC magnetron sputtering method

DC magnetron sputtering법으로 제조된 Ti-Si-N코팅막의 내산화성에 관한 연구

  • Choi, Jun-Bo (School of Materials Science and Engineering, Pusan National University) ;
  • Ryu, Jung-Min (School of Materials Science and Engineering, Pusan National University) ;
  • Cho, Gun (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Kwang-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Mi-Hye (Technology Appraisal Center, Korea Technology Credit Gurantee Fund)
  • 최준보 (부산대학교 재료공학부) ;
  • 류정민 (부산대학교 재료공학부) ;
  • 조건 (부산대학교 재료공학부) ;
  • 김광호 (부산대학교 재료공학부) ;
  • 이미혜 (기술신용보증기금 기술평가센터)
  • Published : 2002.12.01

Abstract

Ti-Si-N coating layers were codeposited on silicon wafer substrates by a DC reactive magnetron sputtering technique using separate titanium and silicon targets in $N_2$/Ar gas mixtures. The oxidation behavior of Ti-Si-N coating layers containing 4.0 at.%, 10.0 at.%, and 27.3 at.% Si was investigated at temperatures ranging from 600 to $960^{\circ}C$. The coating layers containing 4.0 at.% Si became fast oxidized from $600^{\circ}C$ while the coating layers containing 10.0 at.% Si had oxidation resistance up to $800^{\circ}C$. It was concluded that an increase in Si content to a level of 10.0 at.% led to the formation of finer TiN grains and a uniformly distributed amorphous Si3N4 phase along grain boundaries, which acted as efficient diffusion barriers against oxidation. However, the coating layers containing 27.3 at.% Si showed relatively low oxidation resistance compared with those containing 10.0 at.% Si. This phenomenon would be explained by the existence of free Si which was not nitrified in the coating layers containing 27.3 at.% Si.

Keywords

References

  1. T. Cselle and A. Barimani : Surf. Coat. Technol., 76-77 (1995) 712 https://doi.org/10.1016/0257-8972(96)80011-9
  2. M. Wittmer, J. Noser and H. Melchior : J. Appl. Phys., 52(11) (1981)6659 https://doi.org/10.1063/1.328659
  3. J. W. He, C. D. Bai, K, W. Xu and N. S. Hu : Surf. Coat. Technol., 74-75 (1995) 387 https://doi.org/10.1016/0257-8972(95)08371-5
  4. D. Mclntyre, J. E. Greene, G. Hakansson and J. E. Sundgren : J. Appl. Phys., 67(3) (1990) 1542 https://doi.org/10.1063/1.345664
  5. W. D. Munz : J. Vac. Sci. Technol A4(6) (1986) 2717
  6. O. Knotek, M. Bohmer and T. Leyendecker : J. Vac. Sci. Technol., A4(6) (1986) 2695
  7. S. Veprek and S. Reiphch : Thin Solid Films, 268 (1995) 64 https://doi.org/10.1016/0040-6090(95)06695-0
  8. J. Patscheider, T. Zehnder and M. Diserens : Surf. Coat. Technol., 146-147 (2001) 201 https://doi.org/10.1016/S0257-8972(01)01389-5
  9. F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H Garem, J. P. Riviere, A. Cavaleiro and E. Alves : Surf. Coat. Technol., 133-134 (2000) 307 https://doi.org/10.1016/S0257-8972(00)00947-6
  10. G. Llauro, F. Goubilleau, F. Sibieude and R Hillel : Thin Solid Films 315 (1998) 336 https://doi.org/10.1016/S0040-6090(97)00795-5
  11. S. Veprek, M. Haussmann, S. Reiphch, L. Shi-zhi and J. Dian : Surf. Coat. Technol., 86-87(1996) 394 https://doi.org/10.1016/S0257-8972(96)02988-X
  12. F. Vaz, L. Rebouta, M. Andritschky, M. F. daSilva and J. C. Soares : J. Mat. Proc. Technol., 92-93 (1999) 169 https://doi.org/10.1016/S0924-0136(99)00159-4
  13. T. Kacsich and M. A. Nicolet : Thin Solid Films, 349 (1999) 1 https://doi.org/10.1016/S0040-6090(99)00178-9
  14. K. H. Kim and B. H. Park : Chemical Vapor Deposition,5(6) (1999)275 https://doi.org/10.1002/(SICI)1521-3862(199912)5:6<275::AID-CVDE275>3.0.CO;2-J
  15. T. Kacsich, S. M. Gasser, C. Garland and M. ANicolet : Surf. Coat. Technol., 124 (2000) 162 https://doi.org/10.1016/S0257-8972(99)00641-6
  16. M. Diserens, J. Patscheider and F. Levy : Surf. Coat. Technol., 120-121 (1999) 158 https://doi.org/10.1016/S0257-8972(99)00481-8
  17. A. Joshi and H. S. Hu : Surf. Coat. Technol.,76-77 (1995) 409