• Title/Summary/Keyword: Cyclooxygenase-2

Search Result 1,385, Processing Time 0.045 seconds

Screening of Useful Plants with Anti-inflammatory and Antioxidant Activity (항염증 및 항산화 활성 보유 유용 식물 탐색)

  • Lee, Seung-Eun;Choi, Jehun;Lee, Jeong-Hoon;Noh, Hyung-Jun;Kim, Geum-Sook;Kim, Jinkyung;Chung, Hae-Young;Kim, Seung-Yu
    • Korean Journal of Plant Resources
    • /
    • v.26 no.4
    • /
    • pp.441-449
    • /
    • 2013
  • This study was conducted to select some useful plants as functional material candidates. A total of 38 plants were preliminarily screened for the anti-inflammatory and antioxidant activities. The preliminarily selected 8 plants were further investigated to verify the in vitro inhibitory effect on inflammation and oxidative stress. Boehmeria platanifolia (root), Carpinus coreana (branch), and Eupatorium japonicum (leaf) inhibited the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Eupatorium japonicum (leaf) suppressed the expression of cyclooxygenase-2 (COX-2), whereas Boehmeria platanifolia (root) and Prunus yedoensis (branch) inhibited the transcription of nuclear factor-kappa B (NF-${\kappa}B$). Treatment with the extracts ($2.5{\sim}20{\mu}g/ml$) of Abutilon theophrasti (leaf, flower/seed) and Hemistepta lyrata (stem) did not show toxicity on RAW 264.7 cell proliferation, but treatment with $2.5{\mu}g/ml$ of Boehmeria platanifolia (root) exhibited cell toxicity. Carpinus coreana (branch) and Prunus yedoensis (branch) showed potent scavenging activities on peroxynitrite. Akebia quinata (flower), Carpinus coreana (branch), and Prunus yedoensis (branch) effectively inhibited reactive oxygen species (ROS). Abutilon theophrasti (leaf), Boehmeria platanifolia (root), Carpinus coreana (branch), and Eupatorium japonicum (leaf) exhibited strong inhibitory capacity with regard to nitric oxide (NO) production. The results suggested that Abutilon theophrasti (leaf) has in vitro anti-inflammatory and antioxidant activities, and that is a useful functional material candidate.

Inhibition of Lipopolysaccharide-Inducible Nitric Oxide Synthase, $TNF-{\alpha}$, $IL-1{\beta}$ and COX-2 Expression by Flower and Whole Plant of Lonicera japonica (금은화(金銀花) 및 금은화전초(金銀花全草)가 Raw 264.7 cell에서 LPS로 유도된 NO의 생성, iNOS, COX-2 및 cytokine에 미치는 영향)

  • Lee, Dong-Eun;Lee, Jae-Ryung;Kim, Young-Woo;Kwon, Young-Kyu;Byun, Sung-Hui;Shin, Sang-Woo;Suh, Seong-Il;Kwon, Taeg-Kyu;Byun, Joon-Seok;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.481-489
    • /
    • 2005
  • Lonicerae Flos has antibacterial effects against Staphylococcus aureus, streptococci, pneumococci, Bacillus dysenterii, Salmonella typhi, and paratyphoid. It is an antiviral agent. The herb has a cytoprotective effect against $CCl_{4}-induced$ hepatic injury. It has antilipemic action, interfering with lipid absorption from the gut. Nowadays this herb is used mainly in the treatment of upper respiratory infections, such as tonsillitis and acute laryngitis. It is also used in the treatment of skin suppurations, such as carbuncles, and to treat viral conjunctivitis, influenza, pneumonia, and mastitis. Lonicerae Flos is dried flower buds of Lonicera japonica, L. hypoglauca, L. confusa, or L. dasystyla. But, for the most part, we use whole plant of Lonicera japonica, as a flower bud of it. And, little is known of the original copy of effects of whole plant, except for the 'Bon-Cho-Gang-Mok', which is written the effects of flower of Lonicera japonica are equal to effects of leaves and branch of it. The present study was conducted to evaluate the effect of flower and whole plant of Lonicera japonica on the regulatory mechanism of cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) for the immunological activities in Raw 264.7 cells. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, flower and whole plant of Lonicera japonica water extracts inhibited nitric oxide production in a dose-dependent manner and abrogated iNOS and COX-2. Flower and whole plant of Lonicera japonica water extract did not affect on cell viability. To investigate the mechanism by which flower and whole plant of Lonicera japonica water extract inhibits iNOS and COX-2 gene expression, we examined the on phosphorylation of inhibitor ${\kappa}B{\alpha}$ and assessed production of $TNF-{\alpha}$, $interleukin-1{\beta}$ $(IL-1{\beta})$ and interleukin-6 (IL-6). Results provided evidence that flower and whole plant of Lonicera japonica inhibited the production of $IL-1{\beta}$, IL-6 and activated the phosphorylation of inhibitor ${\kappa}B{\alpha}$ in Raw 264.7 cells activated with LPS. These findings suggest that flower and whole plant of Lonicera japonica can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections, respectively.

A Study of the Anti-inflammatory Effect of Protein Derived from Tenebrio molitor Larvae (알칼리 법으로 추출한 갈색거저리 유충 단백질의 항염증 효능)

  • Seo, Minchul;Lee, Hwa Jeong;Lee, Joon Ha;Baek, Minhee;Kim, In-Woo;Kim, Sun Young;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.854-860
    • /
    • 2019
  • This study investigated the optimum pH conditions for efficient extraction of protein from defatted Tenebrio molitor (TM) larvae. We examined the anti-inflammatory effect of protein derived from defatted TM larvae obtained by an alkaline extraction method. Six extraction pH values (7, 8, 9, 10, 11, and 12) and three precipitation pH values (2, 4, and 6) were used. The protein content, browning degree, and recovery yield of the protein obtained under each pH condition were determined. For efficient extraction of protein from defatted TM larvae, a combination of an extraction pH of 9 and precipitation pH of 4 resulted in a 32.4% recovery yield based on the extraction value and degree of browning. To determine whether the protein ameliorated inflammation by inhibition of macrophage activation by lipopolysaccharides (LPS), we measured nitric oxide (NO), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated raw 264.7 macrophage cells. The protein markedly inhibited the production of NO without cytotoxicity and reduced the expression level of COX-2 and iNOS protein through the regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B ($NF-{\kappa}B$) signaling. These results suggested that protein derived from TM larvae could have potential applications in anti-inflammatory therapeutic agents and protein supplements.

Anti-inflammatory Activity of Sargassum micracanthum Water Extract (잔가시 물 추출물의 항염증 효과)

  • Jeong, Da Hyun;Kang, Bo Kyeong;Kim, Koth Bong Woo Ri;Kim, Min Ji;Ahn, Dong Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.227-234
    • /
    • 2014
  • The anti-inflammatory effect of Sargassum micracanthum water extract (SMWE) was investigated using lipopolysaccharide (LPS)-induced inflammatory response in this study. The murine macrophage cell line RAW 264.7 cells were used and MTT assay was performed to measure the cell proliferation ability. The secretion of nitric oxide (NO), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and IL-$1{\beta}$ was measured in LPS-induced RAW 264.7 cells by ELISA. The expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear transcription factor-kappa B p65 protein was studied by immunoblotting. The Balb/c mice were used for an acute toxicity test, and imprinting control region mice were purchased to evaluate a croton oil-induced ear edema. As a result, there was no cytotoxicity in the macrophage proliferation treated with SMWE compared to the control. NO levels decreased with increasing concentration of SMWE and were inhibited over 50%. Moreover, the secretion of IL-6, TNF-${\alpha}$, and IL-$1{\beta}$ was suppressed in a dose-dependent manner, especially, IL-$1{\beta}$ inhibition activity was over 50% at 50 ${mu}g$/mL. The formation of ear edema of mice was reduced at the highest dose tested compared to that in the control. Moreover, in acute toxicity test, no moralities occurred in mice administered 5,000 mg/kg body weight of SMWE over 2 weeks observation period. These results suggested that SMWE may have significant effects on inflammatory factors and be potential anti-inflammatory therapeutic materials.

Bulnesia Sarmienti Aqueous Extract Inhibits Inflammation in LPS-Stimulated RAW 264.7 Cells (RAW 264.7세포에서 lipopolysaccharide로 유발시킨 염증반응에 대한 Bulnesia sarmienti 열수추출물의 억제효과)

  • Cheon, Yong-Pil;Mollah, Mohammad Lalmoddin;Park, Chang-Ho;Hong, Joo-Heon;Lee, Gee-Dong;Song, Jae-Chan;Kim, Kil-Soo
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2009
  • Bulnesia sarmienti (BS), a traditional South American herbal medicine native to Gran Chaco, has been used to treat various human ailments. We investigated the cytotoxic activities and the inhibitory effects of BS bark extract(0, 50, 100 and $200\;{\mu}g/\;mL$) on the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), cyclooxygenase (COX) and proinflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) in the lipopolysaccharide (LPS) (100 ng/ml)-stimulated murine macrophage cell line RAW264.7. The levels of NO, COX, PGE2 production and proinflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) were measured by ELISA kit. Cell viability, as measured by the MTT assay, showed that BS extract had no significant cytotoxicity in RAW264.7 cells. BS extract significantly inhibited the LPS-induced NO, $PGE_2$ and COX production accompanied by an attenuation of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ formation in macrophages. These results suggest that BS extract has potential as an herbal medicine for the treatment of inflammatory diseases.

Anti-inflammatory Metabolites of Agrimonia pilosa Ledeb. and Their Mechanism

  • Park, Mi Jin;Ryu, Da Hye;Cho, Jwa Yeoung;Kang, Young-Hwa
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.13-13
    • /
    • 2018
  • The anti-inflammatory (INF) compounds (1-15) were isolated from Agrimonia pilosa Ledeb. (APL) by activity-guided isolation technique. The isolated compounds (1-15) were identified as quercetin-7-O-rhanmoside (1), apigenin-7-O-glycoside (2), kaempferol-7-O-glycoside (3), apigenin-7-O-[6"-(butyl)-glycoside] (4), querceitn (5), kaempferol (6), apigenin (7), apigenin-7-O-[6"-(pentyl)-glycoside] (8), agrimonolide (9), agrimonolide-6-O-glucoside (10), desmethylagrimonolide (11), desmethylagrimonolide-6-O-glucoside (12), luteolin (13), vitexin (14) and isovitexin (15). Flavonoids, compound 2, 3, 11, and 14-15 have been found in APL for the first time. Furthermore, two novel flavone derivatives, compound 4 and 8, have been isolated inceptively in plant. In the no cytotoxicity concentration ranges of $0-20{\mu}M$, nitric oxide (NO) production level of 1-15 was estimated in LPS-treated Raw 264.7 macrophage cells. The flavone aglycones, 7 (apigenin, $IC_{50}=3.69{\pm}0.34{\mu}M$), 13 (luteolin, $IC_{50}=4.62{\pm}0.43{\mu}M$), 6 (kaempferol, $IC_{50}=14.43{\pm}0.23{\mu}M$) and 5 (quercetin, $IC_{50}=19.50{\pm}1.71{\mu}M$), exhibited excellent NO inhibitory (NOI) activity in dose-dependent manner. In the structure activity relationship (SAR) study of apigenin-derivatives (APD), apigenin; Api, apigenin-7-O-glucoside; Api-G, apignenin-7-O-[6"-(butyl)-glycoside]; Api-BG and apignenin-7-O-[6"-(pentyl)-glycoside]; Api-P, from APL on INF activity was investigated. The INF mediators level such as NO, INF-cytokines, NF-KB proteins, iNOS and COX-2 were sharply increased in Raw 264.7 cells by LPS. When pretreatment with APD in INF induced macrophages, NOI activity of Api was most effective than other APD with $IC_{50}$ values of $3.69{\pm}0.77{\mu}M$. And the NOI activity was declined in the following order: Api-BG ($IC_{50}=8.91{\pm}1.18{\mu}M$), Api-PG ($IC_{50}=13.52{\pm}0.85{\mu}M$) and API-G ($IC_{50}=17.30{\pm}0.66{\mu}M$). The NOI activity of two novel compounds, Api-PG and Api-BG were lower than their aglycone; Api, but more effective than Api-G (NOI: Api-PG and Api-BG). And their suppression ability on INF cytokines such as $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 mRNA showed the similar tendency. Therefore, the anti-INF mechanism study of Api-PG and Api-BG on nuclear factor-kappa B ($NF-{\kappa}B$) pathway, representative INF mechanism, was investigated and Api was used as positive control. Api-BF was more effectively prevent the than phosphorylation of $pI{\kappa}B$ kinase (p-IKK) and p65 than Api-PG in Raw 264.7 cells. In contrast, Api-PG and Api-BG were not reduced the phosphorylation of inhibitor of kappa B alpha ($I{\kappa}B{\alpha}$). Moreover, pretreatment with Api-PG and Api-BG, dose-dependently inhibited LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNAs and proteins in macrophage cells, and their expression were correlated with their NOI activity. Therefore, APL can be utilized to health promote agent associated with their AIN metabolites.

  • PDF

Inhibitory Effect of Protaetiamycine 6 on Neuroinflammation in LPS-stimulated BV-2 Microglia (LPS에 의해 활성화된 미세아교세포에서 흰점박이꽃무지 유래 항균 펩타이드 Protaetiamycine 6의 신경염증 억제 효과)

  • Lee, Hwa Jeong;Seo, Minchul;Baek, Minhee;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1078-1084
    • /
    • 2020
  • Protaetia brevitarsis seulensis is an insect belonging to the order Coleoptera. This insect is reported to contain large amounts of physiologically active substances useful for liver protective effect and improvements in blood circulation as well as a broad source of edible protein. Antimicrobial peptides (AMPs) are found in a variety of species, from microorganisms to mammals, and play an important role in the innate immune systems of living things. Microglia are the main source of proinflammatory cytokines and nitric oxide (NO) in the central nervous system. Activated microglia secrete large amounts of neuroinflammatory mediators (e.g., TNF-α, NO, and ROS), which are the main cause of neuronal cell death. In the present study, we investigated the inhibitory effect of Protaetiamycine 6 (PKARKLQKLSAYKTTLRN-NH2), an AMP derived from Protaetia brevitarsis seulensis, on LPS-induced neuroinflammation in BV-2 microglia. Protaetiamycine 6 significantly inhibited NO production without cytotoxicity and decreased the expression levels of inducible NO synthase and cyclooxygenase-2. In addition, Protaetiamycine 6 also reduced the production of neuroinflammatory cytokines on activated BV-2 microglia. These results suggest that Protaetiamycine 6 could be a good source of functional substance to prevent neuroinflammation and neurodegenerative diseases.

Anti-inflammatory effect of Sinhyowoldo-san Extract with regard to Pro-inflammatory Mediators in PMA plus A23187-induced Human Mast Cells (인간 비만세포에서 PMA와 A23187에 의해 유도된 전염증 매개체에 대한 신효월도산 추출물의 항염증 효과)

  • Wi, Gyeong;Yang, Da-Wun;Kang, Ok-Hwa;Kim, Sung-Bae;Mun, Su-Hyun;Seo, Yun-Soo;Kang, Da-Hye;Lim, Jae-Soo;Kim, Ma-Ryong;Kwak, Nam-Won;Kong, Ryong;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.117-123
    • /
    • 2014
  • Objectives : Sinhyowoldo-san (SHWDS) is said to be a traditional medicine used for shigellosis, abdominal pain, diarrhea. But mechanism of SHWDS mediated-modulation of immune function is not sufficiently understood. To ascertain the molecular mechanisms of SHWDS 70% EtOH extract on pharmacological and biochemical actions in inflammation, we researched the effect of pro-inflammatory mediators in phorbol-12-myristate-13-acetate (PMA)+ A23187-activated human mast cell line (HMC-1). Methods : In the present research, cell viability was measured by MTS assay. pro-inflammatory cytokine production was measured by performing enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), and western blot analysis to analyze the activation of mitogen-activated protein kinases (MAPKs), nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). The investigation focused on whether SHWDS inhibited the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8), MAPKs and $NF-{\kappa}B$ in PMA+A23187-activated HMC-1 cells. Results : SHWDS has no cytotoxicity at measured concentration (50, 100, and $250{\mu}g/ml$). SHWDS ($250{\mu}g/ml$) inhibits pro-inflammatory cytokine expression in PMA+ A23187-activated HMC-1 cells. Moreover, SHWDS inhibited cyclooxygenase (COX)-2 expression. In activated HMC-1 cells, SHWDS suppressed phosphorylation of extracellular signal-regulated kinase (ERK 1/2) and c-jun N-terminal Kinase (JNK 1/2). Then, SHWDS suppressed activation of nuclear factor $NF-{\kappa}B$ in nuclear, degradation of IkB ${\alpha}$ in cytoplasm. Conclusions : We propose that SHWDS has an anti-inflammatory therapeutic potential, which may result from inhibition of ERK 1/2, JNK 1/2 phosphorylation and $NF-{\kappa}B$ activation, thereby decreasing the expression of pro-inflammatory genes.

Protective effects of Gastrodia rhizoma and steamed & fermented Gastrodiae rhizoma with anti-oxidant efficacy and suppression of NFκB signaling pathway on LPS-induced liver injury (LPS로 유발한 간손상 마우스에서 항산화 및 항염증 효능을 통한 천마와 증숙 발효 천마의 간보호 효과)

  • Kim, Hyoung-Jin;Kwon, O Jun;Lee, Ah Reum;Roh, Seong-Soo;Seo, Young-Bae
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.179-188
    • /
    • 2016
  • This study is aimed to evaluate the protective effect of Gastrodiae rhizoma and steamed, dried & fermented Gastrodiae rhizoma on Lipopolysaccharide (LPS)-induced hepatic injury in the mice model. Sample was selected to GR0F0 (not processed gastrodia rhizome) and GR6F4 (fermented with Saccharomyces cerevisiae before steamed and dried 6 times) based on 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid, and High-performance liquid chromatography analysis. Mice were randomly divided into 4 groups - Normal group, vehicle group (LPS treated), GR0F0 group (fed GR0F0 before LPS treated) and GR6F4 group (fed GR6F4 before LPS treated) with 6 mice in each group. GR0F0 group and GR6F4 group were fed each extract 200 mg/kg/day during 8 days. LPS 20 mg/kg injected to the experimental groups as abdominal injection. We measured aspartate aminotransferase, alanine amino-transferase in serum. GR0F0 and GR6F4 showed a significant decrease compared to the vehicle group. As a result of measuring the ROS, GR6F4 group showed a significant reduction in both the serum and liver tissues compared to the vehicle group. GR0F0 group showed a significant reduction only in the liver tissues. Activator protein-1, cyclooxygenase-2, and Inducible nitric oxide synthase were significantly decreased GR0F0 group and GR6F4 group. But tumor necrosis factor alpha only showed a significant reduction in GR6F4 group. GR0F0 and GR6F4 groups against liver damage in mice with LPS. That showed significant effects on anti-oxidant and anti-inflammatory action. The effects of GR6F4 group showed superior results compared to GR0F0 group. Therefore, Steamed, dried & fermented Gastrodia rhizoma was might have a protective effect on liver injury.

Anti-inflammatory Effect of Myricetin from Rhododendron mucronulatum Turcz. Flowers in Lipopolysaccharide-stimulated Raw 264.7 Cells (Lipopolysaccharide로 유도된 Raw264.7 cell에서 Rhododendron mucronulatum Turcz. Flower으로부터 분리한 myricetin에 의한 염증 억제효과)

  • Choi, Moo-Young;Hong, Shin-Hyup;Cho, Jun-Hyo;Park, Hye-Jin;Jo, Jae-Bum;Lee, Jae-Eun;Kim, Dong-Hee;Kim, Byung-Oh;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1245-1252
    • /
    • 2016
  • As a research of inflammation inhibitory activity using natural resource, the inflammation inhibitory activity by purified active compound from Rhododendron mucronulatum flower was experimented. Rhododendron mucronulatum flower components were purified and separated with Sephadex LH-20 and MCI gel CHP-20 column chromatography, Purified compound was confirmed as myricetin by $^1H-NMR$, $^{13}C-NMR$ and Fast atom bombardment (FAB)-Mass spectrum to have inhibition activity on inflammatory factors secreted by Raw 264.7 cells in response to lipopolysaccharide stimulation. Myricetin inhibited nitric oxide (NO) expression in a concentration dependent manner, approximately 40% inhibition was observed at a concentration of $50{\mu}M$. The inhibition effect of myricetin on inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 protein expression was 20% and 80%, respectively, at a concentration of $25{\mu}M$. Myricetin also inhibited expression of the inflammatory cytokines, tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6 and prostaglandin $E_2(PGE_2)$ in a concentration dependent manner; a concentration of $50{\mu}M$, 70%, 80%, 80% and 95% inhibition was observed, respectively. Therefore myricetin isolated from Rhododendron mucronulatum flowers is expected to have an anti-inflammatory effect in Raw 264.7 cell induced by lipopolysaccharides. The results can be expected myricetin from Rhododendron mucronulatum flower to use as functional resource for anti-inflammatory activity.