Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.8.854

A Study of the Anti-inflammatory Effect of Protein Derived from Tenebrio molitor Larvae  

Seo, Minchul (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Hwa Jeong (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Baek, Minhee (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Sun Young (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Hwang, Jae-Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Journal of Life Science / v.29, no.8, 2019 , pp. 854-860 More about this Journal
Abstract
This study investigated the optimum pH conditions for efficient extraction of protein from defatted Tenebrio molitor (TM) larvae. We examined the anti-inflammatory effect of protein derived from defatted TM larvae obtained by an alkaline extraction method. Six extraction pH values (7, 8, 9, 10, 11, and 12) and three precipitation pH values (2, 4, and 6) were used. The protein content, browning degree, and recovery yield of the protein obtained under each pH condition were determined. For efficient extraction of protein from defatted TM larvae, a combination of an extraction pH of 9 and precipitation pH of 4 resulted in a 32.4% recovery yield based on the extraction value and degree of browning. To determine whether the protein ameliorated inflammation by inhibition of macrophage activation by lipopolysaccharides (LPS), we measured nitric oxide (NO), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated raw 264.7 macrophage cells. The protein markedly inhibited the production of NO without cytotoxicity and reduced the expression level of COX-2 and iNOS protein through the regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B ($NF-{\kappa}B$) signaling. These results suggested that protein derived from TM larvae could have potential applications in anti-inflammatory therapeutic agents and protein supplements.
Keywords
Anti-inflammatory activity; mitogen-activated protein kinases; nuclear factor-kappa B; Tenebrio molitor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Song, P. S., Chichester, C. O. and Standtman, F. H. 1996. Kinetic behavior and mechanism of inhibition in the Maillard reaction. I. Kinetic behavior of the reaction between D-glucose and glycine. J. Food Sci. 31, 906-913.   DOI
2 Wang, M., Hettiarachchy, N. S., Oi, M., Burks, W. and Siebenmorgen, T. 1999. Preparation and functional properties of rice bran protein isolate. J. Agric. Food Chem. 46, 411-416.   DOI
3 Yoo, J. M., Hwang, J. S., Goo, T. W. and Yun, E. Y. 2013. Comparative analysis of nutritional and harmful components in Korean and Chinese mealworms (Tenebrio molitor). J. Kor. Soc. Food Sci. Nutr. 42, 249-254.   DOI
4 Yoon, S. B., Lee, Y. J., Park, S. K., Kim, H. C., Bae, H., Kim H. M., Ko, S. G., Choi, H. Y., Oh, M. S. and Park, W. 2009. Antiinflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW264.7 macrophages. J. Ethnopharmacol. 125, 286-290.   DOI
5 Yu, J. M., Jang, J. Y., Kim, H. J., Cho, U. H., Kim, D. I., Kwon, O. J., Cho, Y. J. and An, B. J. 2016. Antioxidant capacity and Raw 264.7 macrophage anti-inflammatory effect of the Tenebrio Molitor. Kor. J. Food Preserv. 23, 890-898.   DOI
6 Chung, M. Y., Kwon, E. Y., Hwang, J. S., Goo, T. W. and Yun, E. Y. 2013. Pretreatment conditions on the power of Tenebrio molitor for using as a novel food ingredient. J. Seric. Entomol. Sci. 51, 9-14.   DOI
7 Ajandouz, E. H., Tchiakpe, L. S., Ore, F. D., Benajiba, A. and Puigserver, A. 2001. Effects of pH on carmelization and maillard reaction kinetics in fructose lysine model system. J. Food Sci. 66, 926-931.   DOI
8 Baek, M., Hwang, J. S., Kim, M. A., Kim, S. H., Goo, T. W. and Yun, E. Y. 2017. Comparative analysis of nutritional components of edible insects registered as novel foods. J. Life Sci. 27, 334-338.   DOI
9 Chao, D., Bahl, P., Houlbrook, S., Hoy, L., Harris, A. and Austyn, J. M. 1999. Human cultured dendritic cells show differential sensitivity to chemotherapy agents as assessed by the MTS assay. Br. J. Cancer 81, 1280-1284.   DOI
10 Chung, M. Y., Yoon, Y. I., Hwang, J. S., Goo, T. W. and Yun, E. Y. 2014. Anti-obesity effect of Allomyrina dichotoma (Arthropoda: Insecta) larvae ethanol extract on 3T3-L1 adipocyte differentiation. Entomol. Res. 44, 9-16.   DOI
11 Ghaly, A. E. 2009. The use of insects as human food in Zambia. OnLine J. Biol. Sci. 9, 93-104.   DOI
12 Gnanasambandam, R. and Hettiarachchy, N. S. 1995. Protein concentrates from unstabilized and stabilized rice bran: Preparation and properties. J. Food Sci. 60, 1066-1069.   DOI
13 Hilliquin, P., Borderie, D., Hernvann, A., Menkes, C. J. and Ekindjian, O. G. 1997. Nitric oxide as S-nitrosoproteins in rheumatoid arthritis. Arthritis Rheum. 40, 1512-1517.   DOI
14 Huis, A., Vanltterbeeck, J., Metens, E., Halloran, A. and Muir, G. 2013. Edible insects: future prospects for food and feed security. Food and Agricultue Organization of the United Nations, Rome, Italy. P67-80.
15 Kang, M.A., Kim, M. J., Han, J. S. and Kim, A. J. 2017. Fatty acid composition and anti-inflammatory effects of the freeze dried Tenebrio molitor Larva. Kor. J. Food. Nutr. 30, 251-256.   DOI
16 Iontcheva, I., Amar, S., Zawawi, K. H., Kantarci, A. and VanDyke, T. E. 2004. Role for moesin in lipopolysaccharide stimulated signal transduction. Infect. Immun. 72, 2312-2320.   DOI
17 Jew, S. S., Bae, O. N. and Chung, J. H. 2003. Anti-inflammatory effects of asiaticoside on inducible nitric oxide synthase and cyclooxygenase-2 in Raw-264.7 cell line. J. Toxicol. Pub. Health 19, 33-37.
18 Kang, I. J., Chung, C. K., Kim, S. J., Nam, S. M. and Oh, S. H. 2001. Effects of Protaetia orientalis (Gory et Perchlon) larva on the lipid metabolism in carbon tetrachloride administered rat. Appl. Microscopy 31, 9-18.
19 Kim, M., Youn, K., Yun. E. Y., Hwang, J. S., Ahn, M. R. and Jeong, W. S. 2014. Effects of solvent fractions of Allomyrina dichotoma larvae through the inhibition of in vitro BACE1 and ${\beta}$-amyloid (25-35)-induced toxicity in rat pheochromocytoma PC12 cells. Entomol. Res. 44, 23-30.   DOI
20 Kim, D. and Chung, J. 2002. Akt: versatile mediator of cell survival and beyond. J. Biochem. Mol. Biol. 35, 106-115.
21 Kole, L., Giri, B., Manna, S. K., Pal, B. and Ghosh, S. 2011. Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38 MAPK and ATF-2 phosphorylation and blocking NF${\kappa}B$ nuclear translocation. Eur. J. Pharmacol. 653, 8-15.   DOI
22 Lee, J. E., Jo, D. E., Lee, A. J., Park, H. K., Youn, K. and Yun, E. Y. 2015. Hepatoprotective and anticancer activities of Allomyrina dichotoma larvae. J. Life Sci. 25, 307-316.   DOI
23 Pruett, S. B., Fan, R. and Zheng, Q. 2003. Characterization of glucocorticoid receptor translocation, cytoplasmic IkappaB, nuclear NFkappaB, and activation of NFkappaB in T lymphocytes exposed to stress-inducible concentrations of corticosterone in vivo. Int. Immunopharmacol. 3, 1-16.   DOI
24 Liden, J., Rafter, I., Truss, M., Gustafsson, J. A. and Okret, S. 2000. Glucocorticoid effects on NF-kappaB binding in the transcription of the ICAM-1 gene. Biochem. Biophys. Res. Commun. 273, 1008-1014.   DOI
25 Marina, L., Kamal, R. M., Andrew, F., Gary, B., Jeremy, S., and Andrew, R. C. 2000. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol. Cell. Biol. 20, 4265-4278.   DOI
26 Norregaard, R., Kwon, T. H. and Frokiær, J. 2015. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney Kidney. Res. Clin. Pract. 34, 194-200.
27 Seo, M., Goo, T. W., Chung, M. Y., Baek, M., Hwang, J. S., Kim, M. A. and Yun, E. Y. 2017. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity high-fat diet-induced obese mice. Int. J. Mol. Sci. 18, 518.   DOI
28 Ryu, H. J., Song, H. J. and Lee, S. O. 2019. Enzymatic preparation and antioxidant activites of protein hydrolysates from Allomyrina dichotoma larvae. J. Kor. Soc. Food Sci. Nutr. 48, 410-417.   DOI
29 Seo, M., Kim, J., Moon, S. S., Hwang, J. S. and Kim, M. A. 2017. Intraventricular adiminstration of Tenebrio molitor larvae extract regulates food intake and body weight in mice with high-fat diet-induced obesity. Nutr. Res. 44, 18-26.   DOI
30 Schmidt, H. and Walter, U. 1994. NO at work. Cell 78, 919-925.   DOI
31 Shen, L., Wang, X., Wang, Z., Wu, Y. and Chen, J. 2008. Studies on tea protein extraction using alkaline and enzyme methods. Food Chem. 107, 929-938.   DOI