DOI QR코드

DOI QR Code

Immunostimulatory and Anti-Obesity Activity of Lonicera insularis Nakai Extracts in Mouse Macrophages RAW264.7 Cells and Mouse Adipocytes 3T3-L1 Cells

섬괴불나무(Lonicera insularis Nakai) 추출물의 면역자극 및 항비만 활성

  • Yu, Ju Hyeong (Department of Medicinal Plant Resources, Andong National University) ;
  • Yeo, Joo Ho (Department of Medicinal Plant Resources, Andong National University) ;
  • Choi, Min Yeong (Department of Medicinal Plant Resources, Andong National University) ;
  • Lee, Jae Won (Department of Medicinal Plant Resources, Andong National University) ;
  • Geum, Na Gyeong (Department of Medicinal Plant Resources, Andong National University) ;
  • An, Mi-Yun (National Forest Seed and Variety Center) ;
  • Jeong, Jin Boo (Department of Medicinal Plant Resources, Andong National University)
  • 유주형 (국립안동대학교 생약자원학과) ;
  • 여주호 (국립안동대학교 생약자원학과) ;
  • 최민영 (국립안동대학교 생약자원학과) ;
  • 이재원 (국립안동대학교 생약자원학과) ;
  • 금나경 (국립안동대학교 생약자원학과) ;
  • 안미연 (국립산림품종관리센터) ;
  • 정진부 (국립안동대학교 생약자원학과)
  • Received : 2022.02.11
  • Accepted : 2022.06.16
  • Published : 2022.08.01

Abstract

In this study, we investigated in vitro immuno-stimulatory and anti-obesity activity of fruit (LIF), leaves (LIL) and stems (LIS) from Lonicera insularis Nakai in mouse macrophages RAW264.7 cells and mouse pre-adipocytes 3T3-L1 cells. LIF, LIL and LIS increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and activated phagocytosis in RAW264.7 cells. Inhibition of toll-like receptor 2/4 (TLR2/4) partly blocked LIF, LIL and LIS mediated production of immunostimulatory factors. In addition, inhibition of mitogen-activated protein kinases (MAPK) signaling attenuated the production of immunostimulatory factors induced by LIF, LIL and LIS. Based on these results of this study, LIF, LIL and LIS is thought to activate macrophages the production of immunostimulatory factors and phagocytosis through toll-like receptor 2/4 (TLR2/4) and MAPKs signaling pathway. In anti-obesity study, LIF reduced the lipid accumulation in 3T3-L1 cells. LIF increased the protein phosphorylation expressions such as AMP-activated protein kinase (AMPK), hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL) related to the lipolysis of the adipocytes. In addition, LIF increased the expression of proteins involved in energy metabolism and brown adipose tissues differentiation such as peroxisome proliferator-activated receptor gamma coativator 1α (PGC-1α) and PR domain-containing16 (PRDM16). These results suggest that LIF is involved in lipid accumulation inhibition through expressing the proteins such as lipolysis and differentiation of white adipocytes to brown adipocytes.

본 연구에서는 섬괴불나무 열매(LIF), 잎(LIL) 그리고 줄기(LIS) 추출물의 면역증진 활성과 섬괴불나무 열매(LIF) 추출물의 항비만 활성을 평가하였다. 섬괴불나무 열매(LIF), 잎(LIL) 그리고 줄기(LIS) 추출물은 RAW264.7 세포에서 NO, iNOS, COX-2, IL-1𝛽, TNF-𝛼와 같은 면역증진인자의 생성을 증가시켰으며, IL-1𝛽의 발현은 NO생성과 관련된 것으로 보여진다. 면역증진인자은 TLR2/4를 통해 MAPKs중 p38 그리고 JNK를 자극하여 발현이 유도되는 것으로 판단된다. 항비만 실험에서, 섬괴불나무 열매(LIF) 추출물은 AMPK, HSL, ATGL의 발현 증가와 perilipin-1 발현 억제를통해 지질분해를 유도하여 세포 내 지질축적을 억제하는 것으로 나타났으며, 갈색지방세포로의 분화유도와 에너지 대사에 관여하는 인자인 PRDM16, PGC-1𝛼의 발현유도를 통해서도 지질축적을 억제하는 것으로 판단된다. 향후 섬괴불나무 추출물은 건강 보조제 및 기능성 식품으로의 활용이 가능할 것으로 판단되지만, 섬괴물나무 추출물의 어떠한 성분이 면역과 항비만 활성에 영향을 미치는지에 대한 성분분석이 필요하다. 또한, 본 연구는 세포를 이용한 실험으로 정확한 분석을 위해서는 동물모델을 이용한 섬괴불나무 추출물의 면역증진 및 항비만 활성에 관한 추가적인 연구가 진행되어야 할 것이다.

Keywords

Acknowledgement

본 논문은 2021년 안동대학교 기본연구지원사업에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. Ahmadian, M., H.S. Sul and Y. Wang. 2010. Lipolysis in adipocytes. Int. J. Biochem. Cell Biol. 42(5):555-559. https://doi.org/10.1016/j.biocel.2009.12.009
  2. Alam, M.B., B.J. Seo, P. Zhao and S.H. Lee. 2016. Anti-melanogenic activities of Heracleum moellendorffii via ERK1/2-mediated MITF downregulation. Int. J. Mol. Sci. 17(11):1844. https://doi.org/10.3390/ijms17111844
  3. Alam, R. and M.M. Gorska. 2011. Mitogen-activated protein kinase signalling and ERK1/2 bistability in asthma. Clin. Exp. Allergy 41(2):149-159. https://doi.org/10.1111/j.1365-2222.2010.03658.x
  4. Bai, Y., Y. Jiang, T. Liu, F. Li, J. Zhang, Y. Luo, L. Zhang, G. Yan, Z. Feng, X. Li, X. Wang and W. Hu. 2019. Xinjiang herbal tea exerts immunomodulatory activity via TLR2/4-mediated MAPK signaling pathways in RAW264. 7 cells and prevents cyclophosphamide-induced immunosuppression in mice. J. Ethnopharmacol. 228:179-187. https://doi.org/10.1016/j.jep.2018.09.032
  5. Bandaru, P., H. Rajkumar and G. Nappanveettil. 2013. The impact of obesity on immune response to infection and vaccine: an insight into plausible mechanisms. Endocrinol. Metab. Synd. 2:2.
  6. Barr, R.K. and M.A. Bogoyevitch. 2001. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int J. Biochem. Cell Biol. 33(11):1047-1063. https://doi.org/10.1016/S1357-2725(01)00093-0
  7. Bogdan, C., M. Rollinghoff and A. Diefenbach. 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12(1):64-76. https://doi.org/10.1016/S0952-7915(99)00052-7
  8. Calder, P.C. 2020. Nutrition, immunity and COVID-19. J. Nutr. Health. 3(1):74.
  9. Cavaillon, J.M. 1994. Cytokines and macrophages. Biomed. Pharmacother. 48(10):445-453. https://doi.org/10.1016/0753-3322(94)90005-1
  10. Cuadrado, A. and A.R. Nebreda. 2010. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429(3):403-417. https://doi.org/10.1042/BJ20100323
  11. Cuthbertson, D.J., U. Alam and A. Tahrani. 2020. COVID-19 and obesity: an opportunity for change. Ther. Adv. Endocrinol. Metab. 11:1-4.
  12. De Heredia, F.P., S. Gomez-Martinez and A. Marcos. 2012. Obesity, inflammation and the immune system. Proc. Nutr. Soc. 71(2):332-338. https://doi.org/10.1017/S0029665112000092
  13. De Oliviera Nascimento, L., P. Massari and L.M. Werzler. 2012. The role of TLR2 in infection and immunity. Front. Immunol. 3:79. https://doi.org/10.3389/fimmu.2012.00079
  14. Gammone, M.A. and N. D'Orazio. 2015. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar. Drugs 13(4): 2196-2214. https://doi.org/10.3390/md13042196
  15. Giroux, M. and A. Descoteaux. 2000. Cyclooxygenase-2 expression in macrophages: modulation by protein kinase C-α. J. Immunol. 165(7):3985-3991. https://doi.org/10.4049/jimmunol.165.7.3985
  16. Goodwin, J.S. and D.R Webb. 1980. Regulation of the immune response by prostaglandins. Clin. Immunol. Immunopathol. 15(1):106-122. https://doi.org/10.1016/0090-1229(80)90024-0
  17. Guo, Y.J., W.W. Pan, S.B. Liu, Z.F. Shen, Y. Xu and L.L. Hu. 2020. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 19(3):1997-2007.
  18. Hansen, J.S., S. De Mare, H.A. Jones, O. Goransson and K. Lindkvist-Petersson. 2017. Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Sci. Rep. 7(1):1-14. https://doi.org/10.1038/s41598-016-0028-x
  19. Hirayama, D., T. Iida and H. Nakase. 2018. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 19(1):92. https://doi.org/10.3390/ijms19010092
  20. Hussain, A., K. Mahawar, Z. Xi., W. Yang and E.H. Shamsi. 2020. Obesity and mortality of COVID-19. Meta-analysis. Obes. Res. Clin. Pract. 14(4):295-300. https://doi.org/10.1016/j.orcp.2020.07.002
  21. Hwang, J.T., S.H. Kim, M.S. Lee, S.H. Kim, H.J. Yang, M.J. Kim, H.S. Kim, J.H. Ha, M.S. Kim and D.Y. Kwon. 2007. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem. Biophys. Res. Commun. 364(4):1002-1008. https://doi.org/10.1016/j.bbrc.2007.10.125
  22. Jeong, K.S., M.S. Kim, W. Lee and J.H. Pak 2014. Intraspecific variation and geographic study of Lonicera insularis (Caprifoliaceae) based on chloroplast DNA sequences. Kor. J. Plant Tax. 44(3):202-207. https://doi.org/10.11110/kjpt.2014.44.3.202
  23. Johan, W.E., L. Dominique, S. Egbert, H.M.S. Wim, V. Carine, B.H. Gabby, H. Cecilia, A. Peter and E.B. Ellen. 2007. Adipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. J. Clin. Endocrinol. Metab. 92(6):2292-2299. https://doi.org/10.1210/jc.2006-1318
  24. Kim, M.S. 2017. Chemical Constituents from Lonicera insularis. MS Thesis, Seoul National University, Korea.
  25. Lake, D., S.A. Correa. and J. Muller. 2016. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol. Life Sci. 73(23):4397-4413. https://doi.org/10.1007/s00018-016-2297-8
  26. Lee, E.H., H.J. Park, E.J. Hong, S. Akhmadjon, B.O. Jung, H.Y. Jung, I.K. Kang and Y.J. Choi. 2020. Physiological activities of leaf extract of Lonicera morrowii A. Gray, a plant native to Ulleungdo. J. Appl. Biol. Chem. 63(4):443-449. https://doi.org/10.3839/jabc.2020.058
  27. Lee, J.S. and E.K. Hong. 2011. Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int. Immunopharmacol. 11(9):1226-1233. https://doi.org/10.1016/j.intimp.2011.04.001
  28. Lima-Junior, D.S., D.L. Costa, V. Carregaro. L.D. Cunha, A.L.N. Silva, T.W.P. Mineo, F.R.S. Gutierrez, M. Bellio, K.R. Bortoluci, R.A. Flavell, M.T. Bozza, J.S. Silva and D.S. Zamboni. 2013. Inflammasome-derived IL-1β production induces nitric oxide-mediated resistance to Leishmania. Nat. Med. 19(7):909-915. https://doi.org/10.1038/nm.3221
  29. Marcato, L.G., A.P. Ferlini, R.C.F. Bonfim, M.L. Ramos-Jorge, C. Ropert, L.F.C. Afonso, L.Q. Vieira and A.P.R. Sobrinho. 2008. The role of Toll-like receptors 2 and 4 on reactive oxygen species and nitric oxide production by macrophage cells stimulated with root canal pathogens. Oral Microbiol. Immunol. 23(5):353-359. https://doi.org/10.1111/j.1399-302X.2008.00432.x
  30. McNeill, E., M.J. Crabtree, N. Sahgal, J. Patel, S. Chuaiphichai, A.J. Iqbal, A.B. Hale, D.R. Greaves and K.M. Channon. 2015. Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radic. Biol. Med. 79:206-216. https://doi.org/10.1016/j.freeradbiomed.2014.10.575
  31. Mihaylova, M.M. and R.J. Shaw. 2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Rev. Mol. Cell Biol. 13(9):1016-1023. https://doi.org/10.1038/ncb2329
  32. Mukherjee, S., S. Karmakar and S.P.S. Babu. 2016. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Braz. J. Infect. Dis. 20:193-204. https://doi.org/10.1016/j.bjid.2015.10.011
  33. Pettersson-Klein, A.T., M. Izadi, D.M.S. Ferreira, I. Cervenka, J.C. Correia, V. Martinez-Redondo, M. Soutern, M. Cameron, T. Kamenecka, L.Z. Agudelo, M. Porsmyr-palmertz, U. Martens, B. Lundgren, M. Otrocka, A. Jenmalm-Jensen, P.R. Griffin and J.L. Ruas. 2018. Small molecule PGC-1α1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration. Mol. Metab. 9:28-42. https://doi.org/10.1016/j.molmet.2018.01.017
  34. Ren, D., D. Lin, A. Alim, Q. Zheng and X. Yang. 2017. Chemical characterization of a novel polysaccharide ASKP-1 from Artemisia sphaerocephala Krasch seed and its macrophage activation via MAPK, PI3k/Akt and NF-κB signaling pathways in RAW264. 7 cells. Food Funct. 8(3):1299-1312. https://doi.org/10.1039/C6FO01699E
  35. Seale, P., B. Bjork, W. Yang, S. Kakimura, S. Chin, S. Kuang, A. Scime, S. Devarakonda, H.M. Conroe, H. ErdjumentBromage, P. Tempst, M.A Rudniki, D.R. Beier and B.M. Spiegelman. 2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207):961-967. https://doi.org/10.1038/nature07182
  36. Suzanne, S.M. and L.J. Aronee. 2012. Causes of obesity. Abdom. Radiol. 37(5):730-732. https://doi.org/10.1007/s00261-012-9862-x
  37. Takeda, K. and S. Akira. 2004. TLR signaling pathways. Semin. Immunol. 16(1):3-9. https://doi.org/10.1016/j.smim.2003.10.003
  38. Wang, J., M. Zhou, T. Wu, L. Fang, C. Liu and W. Min. 2020. Novel anti-obesity peptide (RLLPH) derived from hazelnut (Corylus heterophylla Fisch) protein hydrolysates inhibits adipogenesis in 3T3-L1 adipocytes by regulating adipogenic transcription factors and adenosine monophosphate-activated protein kinase (AMPK) activation. J. Biosci. Bioeng. 129(3):259-268. https://doi.org/10.1016/j.jbiosc.2019.09.012
  39. Wang, T. and C. He. 2020. TNF-α and IL-6: The link between immune and bone system. Curr. Drug Targets 21(3):213-227. https://doi.org/10.2174/1389450120666190821161259
  40. Weber, A., P. Wasiliew and M. Kracht. 2010. Interleukin-1β (IL-1β) processing pathway. Sci. Signal. 3(105):2.
  41. Wronska, A. and Z. Kmiec. 2012. Structural and biochemical characteristics of various white adipose tissue depots. Acta. Physiol. 205(2):194-208. https://doi.org/10.1111/j.1748-1716.2012.02409.x
  42. Yang, F., X. Li, Y. Yang, S.M. Ayivi-Tosuh, F. Wang, H. Li and G. Wang. 2019. A polysaccharide isolated from the fruits of Physalis alkekengi L. induces RAW264. 7 macrophages activation via TLR2 and TLR4-mediated MAPK and NF-κB signaling pathways. Int. J. Biol. Macromol. 140:895-906. https://doi.org/10.1016/j.ijbiomac.2019.08.174
  43. Yang, Y., R. Xing, S. Liu, Y. Qin, K. Li, H. Yu and P. Li. 2018. Immunostimulatory effects of sulfated chitosans on RAW 264.7 mouse macrophages via the activation of PI3K/Akt signaling pathway. Int. J. Biol. Macromol. 108:1310-1321. https://doi.org/10.1016/j.ijbiomac.2017.11.042
  44. Yokokawa, T., K. Sato, N. lwanaka, H. Honda, K. Higashida, M. lemitsu, T. hayashi and T. Hashimoto. 2015. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes. Biochem. Biophys. Res. Commun. 463(1-2):42-47. https://doi.org/10.1016/j.bbrc.2015.05.013
  45. Yoneshiro, T. and M. Satio. 2015. Activation and recruitment of brown adipose tissue as anti-obesity regimens in humans. Ann. Intern. Med. 47(2):133-141. https://doi.org/10.3109/07853890.2014.911595
  46. Yoshizumi, M., J.I. Abe, J. Haendeler, Q. Huang and B.C. Berk. 2000. Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species. J. Appl. Biol. Chem. 275(16):11706-11712. https://doi.org/10.1074/jbc.275.16.11706
  47. Yu, J.H., N.G. Geum, J.H. Yeo and J.B. Jeong. 2021. Immuno-enhancing and anti-obesity effect of Abelmoschus manihot root extracts. Korean J. Plant Res. 34(5):411-419. https://doi.org/10.7732/KJPR.2021.34.5.411