Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.12.1078

Inhibitory Effect of Protaetiamycine 6 on Neuroinflammation in LPS-stimulated BV-2 Microglia  

Lee, Hwa Jeong (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Seo, Minchul (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Baek, Minhee (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Shin, Yong Pyo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Hwang, Jae-Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Journal of Life Science / v.30, no.12, 2020 , pp. 1078-1084 More about this Journal
Abstract
Protaetia brevitarsis seulensis is an insect belonging to the order Coleoptera. This insect is reported to contain large amounts of physiologically active substances useful for liver protective effect and improvements in blood circulation as well as a broad source of edible protein. Antimicrobial peptides (AMPs) are found in a variety of species, from microorganisms to mammals, and play an important role in the innate immune systems of living things. Microglia are the main source of proinflammatory cytokines and nitric oxide (NO) in the central nervous system. Activated microglia secrete large amounts of neuroinflammatory mediators (e.g., TNF-α, NO, and ROS), which are the main cause of neuronal cell death. In the present study, we investigated the inhibitory effect of Protaetiamycine 6 (PKARKLQKLSAYKTTLRN-NH2), an AMP derived from Protaetia brevitarsis seulensis, on LPS-induced neuroinflammation in BV-2 microglia. Protaetiamycine 6 significantly inhibited NO production without cytotoxicity and decreased the expression levels of inducible NO synthase and cyclooxygenase-2. In addition, Protaetiamycine 6 also reduced the production of neuroinflammatory cytokines on activated BV-2 microglia. These results suggest that Protaetiamycine 6 could be a good source of functional substance to prevent neuroinflammation and neurodegenerative diseases.
Keywords
Antimicrobial peptide; inflammatory cytokine; microglia; neuroinflammation; Protaetia brevitarsis seulensis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Gonzalez-Scarano, F. and Baltuch, G. 1999. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 34, 307-321.
2 Hanada, T. and Yoshimura, A. 2002. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 3, 413-421.   DOI
3 Harris, S. G., Padilla, J., Koumas, L., Ray, D. and Phipps, R. P. 2002. Prostaglandins as modulators of immunity. Trends Immunol. 23, 144-150.   DOI
4 Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. and Chaudhuri, G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA. 84, 9265-9269.   DOI
5 Jiang, Z., Li, C. Arrick, D. M., Yang, S., Baluna, A. E. and Sun, H. 2014. Role of nitric oxide synthases in early blood-brain barrier disruption fol-lowing transient focal cerebral ischemia. PLoS One 9, e93134.   DOI
6 Kasckow, J. W., Aguilera, G., Mulchahey, J. J., Sheriff, S. and Herman, J. P. 2003. In vitro regulation of corticotropinreleasing hormone. Life Sci. 73, 769-781.   DOI
7 Knott, C., Shern, G. and Wilkin, G. P. 2000. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyflooxygenase-1 and -2. Mol. Cell. Neurosci. 16, 724-739.   DOI
8 Lee, J. I., Lee, W. H., Kim, M. A., Hwang, J. S., Na, M. K. and Bae, J. S. 2017. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe). J. Cell. Mol. Med. 21, 1217-1227.   DOI
9 Mason, R. P. and Cockcroft, J. R. 2006. Targeting nitric oxide with drug therapy. J. Clin. Hypertens (Greenwich) 8, 40-52.   DOI
10 Pfeilschifter, J., Eberhardt, W., Hummel, R., Kunz, D., Muhl, H., Nitsch, D., Pluss, C. and Walker, G. 1996. Therapeutic strategies for the inhibition of inducible nitric oxide synthase-potential for a novel class of anti-inflammatory agents. Cell Biol. Int. 20, 51-58.   DOI
11 Aggarwal, B. B. 2003. Signaling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745-756.   DOI
12 Beutler, B. and Cerami, A. 1988. The history, properties, and biological effects of cachectin. Biochemistry 27, 7575-7582.   DOI
13 Baek, M., Seo, M., Kim, M. A., Yun, E. Y. and Hwang, J. S. 2017. The antioxidant activities and hair-growth promo-tion effects of Tenebrio molitor larvae extracts (TMEs). J. Life Sci. 27, 1269-1275.   DOI
14 Benveniste, E. N. 1997. Immunology of the nervous system. pp.419-459. Oxford University press, New York.
15 Benveniste, E. N. 1998. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev. 9, 259-275.   DOI
16 Carme, S., Carme, C., Josep M. T. and Joan, S. 2002. Astrocytes enhance lipopolysaccharide-induced nitric oxide production by microglial cells. Eur. J. Neurosci. 16, 1275-1283.   DOI
17 Steinstraesser, L., Kraneburg, U. M. and Hirsch, T., Kesting, M., Steinau, H. U., Jacobsen, F. and Al-Benna, S. 2009. Host defense peptides as effector molecules of the innate immune response: a sledgehammer for drug resistance? Int. J. Mol. Sci. 10, 3951-3970.   DOI
18 Reiko, H., Masshide, A., Katsuko, S., Hirotaka, K., Masatoshi, S., Masugi, N., Michio, N. and Yoichiro, I. 1998. Production of mice deficient in genes for interleukin(IL)-1α, IL-1β, IL-1α/β, and IL-1 receptor antagonist shows that IL-1β is crucial in turpentine-induced fever development and glucocorticoid secretion. J. Exp. Med. 187, 1463-1475.   DOI
19 Seo, M., Lee, J. H., Baek, M. H., Kim, M. A., Ahn, M. Y., Kim, S. H., Yun, E. Y. and Hwang, J. S. 2017. A novel role for earthworm peptide Lumbricusin as a regelator of neurinfammation. Biochem. Biophys. Res. Commun. 490, 1004-1010.   DOI
20 Seo, U. K., Jung, H. W. and Park, Y. K. 2008. Chloroform fraction of zingiberis rhizoma recens modulates the production of inflammatory mediators in LPS-stimulated BV2 microglial cells. Kor. J. Herbol. 23, 73-83.
21 Delgado, A. V., McManus, A. T. and Chambers, J. P. 2003. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte sub-populations after exposure to substance. Neuropeptide 37, 355-361.   DOI
22 Toyoko, A. and Guoying, B. 2003. Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol. Dis. 12, 35-45.   DOI
23 Wang, J. Y., Lee, C. T. and Wang, J. Y. 2014. Nitric oxide plays a dual role in the oxidative injury of cultured rat microglia but not astroglia. Neuro. Sci. 281, 164-177.
24 Yun, H. J., Heo, S. K., Lee, Y. T., Park, W. H. and Park, S. D. 2008. Anti-inflammatory dffect of Evodia Officinalis DODE in mouse macrophage and human vascular endothe-rial cells. Kor. J. Herbol. 23, 29-38.
25 Zhang, Z. L. 1984. Economic insect fauna of China. Fasc. 28, Cloeoptera: Larva of Scarabaeidae, pp.27-28, Science Press, Beijing (in Chinese).
26 Chon, J. W., Kweon, H. Y., Jo, Y. Y., Yeo, J. H. and Lee, H. S. 2012. Protective effects of extracts of Protaetia brevitarsis on carbon tetrachloride-induced hepatotoxicity in the mice. J. Seric. Entomol. Sci. 50, 93-100.   DOI
27 Chung, M. Y., Kwon, E. Y., Hwang, J. S., Goo, T. W. and Yun, E. Y. 2013. Analysis of general composition and harmful material of Protaetia brevitarsis. J. Life Sci. 23, 664-668.   DOI
28 Cross, A. K. and Woodroofe, M. N. 2001. Immunoregulation of microglial functional properties. Microsc. Res. Tech. 54, 10-17.   DOI
29 Dinarello, D. A., Endres, S., Medani, S. N., Meydani, M. and Marc, K. H. 1991. Interleukin-1, anorexia, and dietary fatty acid. Ann. NY Acad. Sci. 1, 332.
30 Fridovich, I. 1986. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247, 1-11.   DOI