• Title/Summary/Keyword: Curing Concrete

Search Result 1,383, Processing Time 0.026 seconds

A Study on Early Evaluation Method of Durability of PC Concrete According to the Accelerated Curing Conditions (촉진양생조건에 따른 PC콘크리트의 내구성 조기 평가기법 연구)

  • 김관호;박광수;신수균;이준구;장문기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.169-174
    • /
    • 2002
  • We can consider that the study on early evaluation of compressive strength and durability of concrete is useful to raise safety of quality control of concrete. In this paper, was proposed to method early to predict strength and durability of concrete with parameter, such as Water/cement(W/C) ratio and steam curing conditions. Through analyzing the relationship between the compressive strength and the amount of chloride penetration into concrete specimens, a new formula early estimating durability of the concrete structure was suggested.

  • PDF

Recovery of mortar-aggregate interface of fire-damaged concrete after post-fire curing

  • Li, Lang;Zhang, Hong;Dong, Jiangfeng;Zhang, Hongen;Jia, Pu;Wang, Qingyuan;Liu, Yongjie
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2019
  • In order to investigate the strength recovery of fire-damaged concrete after post-fire curing, concrete specimens were heating at $2^{\circ}C/min$ or $5^{\circ}C/min$ to 400, 600 and $800^{\circ}C$, and these exposed specimens were soaked in the water for 24 hours and following by 29-day post-fire curing. The compressive strength and split tensile strength of the high-temperature-exposed specimens before and after post-fire curing were tested. The proportion of split aggregate in the split surfaces was analyzed to evaluate the mortar-aggregate interfacial strength. After the post-fire curing process, the split tensile strength of specimens exposed to all temperatures was recovered significantly, while the recovery of compressive strength was only obvious within the specimens exposed to $600^{\circ}C$. The tensile strength is more sensitive to the mortar-aggregate interfacial cracks, which caused that the split tensile strength decreased more after high-temperature exposure and recovery more after post-fire curing than the compressive strength. The mortar-aggregate interfacial strength also showed remarkable recovery after post-fire curing, and it contributed to the recovery of split tensile strength.

A Study of Spraying Curing Compound for Concrete Pavement Considering Environmental Condition in Tunnel (터널내 환경을 고려한 콘크리트 포장의 양생제 살포기준 연구)

  • Ryu, SungWoo;Kwon, OhSun;Song, GeoRuemSoo;Lee, MinKyung;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : This study is to suggest tunnel length to spray curing compound, based on the field tests. METHODS : At first field test, length from the entrance of tunnel to wet wall was checked by visual survey. The second and third test, various sensors were installed in concrete or in tunnel, such as RH sensor, temperature sensor, portable weather station and etc.. And also, test for bleeding and retaining water of concrete were conducted to evaluate environmental effect on concrete pavement. RESULTS : The result of the field experiment for tunnel length to spray curing compound indicates that length changes depending on tunnel length, season, and location. Environmental condition of a short tunnel was not much different between location near entrance and at center of tunnel. However, in case of a medium and long tunnel, effect of outside environmental condition decreased, when location moved into tunnel center of it. CONCLUSIONS : From the testing results, it can be proposed that optimum tunnel length to spray curing compound is 60m for a medium and long tunnel, and whole length for a short tunnel.

An Experimental Study on the Application in-situ of Curing Method by Planar Surface Heater for Cold Weather Concreting (전기발열시트 표면가열 양생공법의 현장적용 연구)

  • 김형래;조호규;김찬수;지남용
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.19-22
    • /
    • 2003
  • The purpose of this study is to analyze the curing effect of planar surface heater for concreting in cold weather. Some experiments were conducted to evaluate the temperature history of concrete structures cured with heating sheets. Results are as follows ; (1) The temperature of concrete showed continuously rising trend with the heating by planar surface heater under the cold environmental condition of 3~-12$^{\circ}C$. And after about 24 hours the maximum temperature of concrete was reached at 25~3$0^{\circ}C$. (2) The temperature of slab concrete heated by planar surface heater of 130W/$m^2$ was at least $25^{\circ}C$ higher than that of an exterior air, and the curing performance was much more effective than heating by hot wind machine. (3) Through the curing by planar surface heater for 48 hours, the concrete maturity of about 1.5 times to heating by hot wind machine was acquired.

  • PDF

A study of a plan for better curing methods through a reseach for a field of construction work (동절기 콘크리트 양생방법의 현장 실태조사 및 개선방안에 관한 연구)

  • Park Sung-June;Moon Hyung-Soo;Kim Chang-Duk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.379-382
    • /
    • 2003
  • Construction concrete needs to maintain suitable environment which contains temperature and humidity etc. Then concrete shows own strength. The environment is not regular and contains many variables. Especially the climate element occupies many parts of variables. We have the climate environment which goes down to $-4^{\circ}C$. The factor that obstruct to construction is the failure at a construction progress. But it must be processed to be scheduled. Therefore we have to do the special care for factor of climate that obstruct to construction. We must make assurance doubly sure at the quality of concrete. We need maintenance of temperature and humidity for the hardening until the requirement period after a concrete pured in. We must do the care of curing sufficiently not to take the influence of injurious activity. This causes strength of concrete. Specific method of curing is according to each situation which is environment element. We wish to analyze curing course in construction of concrete at the paper. Also we wish to predict the problem as to consider curing and suggest the improvement plan through the paper.

  • PDF

Compressive Strength of Concrete due to Moisture Conditions of Recycled Coarse Aggregates and Curing Conditions (순환 굵은 골재의 함수상태와 양생조건에 따른 콘크리트의 압축강도)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Seungeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.485-492
    • /
    • 2019
  • In this study, the effect of moisture conditions of recycled coarse aggregates on the compressive strength of concrete was evaluated with the water/binder ratios and the curing conditions. The saturated recycled aggregates seemed to have the negative effect on the strength development of concrete. This is the because of the decrease in bond strength between aggregate and cement paste due to the increase of surface water according to the high absorption of recycled aggregates. The effect of types and moisture conditions of aggregates according to the change of water/binder ratio was similar. However, the curing conditions had a significant effect on the compressive strength of the concrete with the different types of aggregates. In the case of curing in air, the recycled aggregates with high absorption reduced the moisture required for hydration and increased the rate of vaporizing, and these result in interfering strength development. The moisture conditions of the recycled aggregates have a considerable effect on the compressive strength of the concrete, and it is necessary to control the moisture conditions of aggregates in the production of concrete with recycled coarse aggregate. And the control of the curing condition is very important for the concrete with recycled aggregate.

Drying shrinkage of Non-Sintered Cement Concrete with various curing condition (양생조건 변화에 따른 비소성 시멘트 콘크리트의 건조수축)

  • Mun Kyoung-Ju;Park Won-Chun;Soh Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.357-360
    • /
    • 2005
  • This research investigates the drying shrinkage of non-sintering cement(NSC) matrix added phosphogypsum(PG) and waste lime(WL) to granulated blast furnace slag(GBFS) as sulfate and alkali activators with various curing condition. The experimental results are follow: When the moisture is fully supplied at the early curing age, there is effect which carries out abundant generation of the ettringite which is an expansion nature mineral, and compensates for contraction with a chemical prestress concept.

  • PDF

A Study on the Effect of Accelerated Curing on 28-Days Compressive Strength of Concrete (촉진양생이 콘크리트의 28일 압축강도에 미치는 영향에 관한 연구)

  • 최세규;유승룡;김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.141-148
    • /
    • 1996
  • The pulished works on Accelerated Curing Effect were generally performed around from 1960 to 1970th century for 18 to 24 hours - total curing periods. It is not possible to define the effect of temperature rise because those results were obtaine mainly by using the manually operated steam-curing tank. Thus, it may not be available to apply those data immediately on the domestic PC wall production line. The testing specimens were made from the standard mix proportion according to those of domestic PC factories to establish a basic data for the Accelerated Curing Effect. The experimental tests were conducted according to the conditions of each sub-curing periods. By comparing the results of compression tests on de-molded and 28-day water-curing specimens, we find that the most effective curing condition to obtain more than the required design strength after 28 day of water curing may be as follows: the presteaming period does not affect seriously and less than$30^{circ}C/hr$- the rate of temperature rise andless than $82^{circ}C$ - maximum temperature are necessary. It seems that post-curing procedure is very important factor to increase the effect of accelerated curing.

Prediction of Concrete Strength Using Multiple Neural Networks (다중 신경망을 이용한 콘크리트 강도 추정)

  • 이승창;임재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.647-652
    • /
    • 2002
  • In the previous study, authors presented the I-ProConS (Intelligent PREdiction system of CONcrete Strength) using artificial neural networks (ANN) that provides in-place strength information of the concrete to facilitate concrete form removal and scheduling for construction. The serious problem of the system has occured, which it cannot appropriately predict the concrete strength when the curing temperature of a curing day is changed. This is because it uses the single neural networks, which all nodes are fully connected, and thus it cannot smoothly respond for external impact. However this paper presents that the problem can be solved by multiple neural networks, which is composed of five ANNs.

  • PDF

Thermal Crack Control of Mass Concrete by Concrete Placing Height and Curing Method (매스콘크리트의 타설높이 및 양생조건에 따른 온도균열 저감 방안에 관한 연구)

  • 민병소;신길수;김대권;이현희;신성우;이광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.369-376
    • /
    • 2001
  • As many studies have performed to reduce thermal cracking in mass concrete, it is already prepared against thermal cracking, we can find many plans against thermal cracking in several reference book. But it needs practical guidelines to be available in construction site. In this study to establish control method of thermal cracking in mass concrete, tests which have factors of placing thickness and curing method of concrete are performed.

  • PDF