Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Alonso, C. and Fernandez, L. (2004), "Dehydration and rehydration processes of cement paste exposed to high temperature environments", J. Mater. Sci., 39(9), 3015-3024. https://doi.org/10.1023/B:JMSC.0000025827.65956.18.
- Behnood, A. and Ghandehari, M. (2009), "Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures", Fire Saf. J., 44(8), 1015-1022. https://doi.org/10.1016/j.firesaf.2009.07.001.
- Castellote, M., Alonso, C., Andrade, C., Turrillas, X. and Campo, J. (2004), "Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction", Cement Concrete Res., 34(9), 1633-1644. https://doi.org/10.1016/S0008-8846(03)00229-1.
- Cicekli, U., Voyiadjis, G.Z. and Abu Al-Rub, R.K. (2007), "A plasticity and anisotropic damage model for plain concrete", Int. J. Plast., 23(10-11), 1874-1900. https://doi.org/10.1016/j.ijplas.2007.03.006.
- Crook, D.N. and Murray, M.J. (1970), "Regain of strength after firing of concrete", Mag. Concrete Res., 22(72), 149-154. https://doi.org/10.1680/macr.1970.22.72.149.
- Culfik, M.S. and O zturan, T. (2010), "Mechanical properties of normal and high strength concretes subjected to high temperatures and using image analysis to detect bond deteriorations", Constr. Build. Mater., 24(8), 1486-1493. https://doi.org/10.1016/j.conbuildmat.2010.01.020.
- Elices, M. and Rocco, C.G. (2008), "Effect of aggregate size on the fracture and mechanical properties of a simple concrete", Eng. Fract. Mech., 75(13), 3839-3851. https://doi.org/10.1016/j.engfracmech.2008.02.011.
- Felekoglu, B. and Keskinates, M. (2016), "Multiple cracking analysis of HTPP-ECC by digital image correlation method", Comput. Concrete, 17(6), 831-848. https://doi.org/10.12989/cac.2016.17.6.831.
- Fu, Y.F., Wong, Y.L., Poon, C.S., Tang, C.A. and Lin, P. (2004a), "Experimental study of micro/macro crack development and stress-strain relations of cement-based composite materials at elevated temperatures", Cement Concrete Res., 34(5), 789-797. https://doi.org/10.1016/j.cemconres.2003.08.029.
- Fu, Y.F., Wong, Y.L., Tang, C.A. and Poon, C.S. (2004b), "Thermal induced stress and associated cracking in cement-based composite at elevated temperatures-Part I: Thermal cracking around single inclusion", Cement Concrete Compos., 26(2), 99-111. https://doi.org/10.1016/S0958-9465(03)00086-6.
- Fu, Y.F., Wong, Y.L., Tang, C.A. and Poon, C.S. (2004c), "Thermal induced stress and associated cracking in cement-based composite at elevated temperatures-Part II: Thermal cracking around multiple inclusions", Cement Concrete Compos., 26(2), 113-126. https://doi.org/10.1016/S0958-9465(03)00087-8.
- Henry, M., Darma, I.S., Haraguchi, Y. and Sugiyama, T. (2013), "Analysis of cracking in high-strength cementitious materials under heating and re-curing using X-ray CT", Third International Conference on Sustainable Construction Materials and Technologies, Tokyo, Japan.
- Henry, M., Darma, I.S. and Sugiyama, T. (2014), "Analysis of the effect of heating and re-curing on the microstructure of high-strength concrete using X-ray CT", Constr. Build. Mater., 67, 37-46. https://doi.org/10.1016/j.conbuildmat.2013.11.007.
- Henry, M., Suzuki, M. and Kato, Y. (2011), "Behavior of fire-damaged mortar under variable re-curing conditions", ACI Mater. J., 108(3), 281-289.
- Hilloulin, B., Hilloulin, D., Grondin, F., Loukili, A. and De Belie, N. (2016), "Mechanical regains due to self-healing in cementitious materials: Experimental measurements and micro-mechanical model", Cement Concrete Res., 80, 21-32. https://doi.org/10.1016/j.cemconres.2015.11.005.
- Hwang, C.L., Peng, S.S., Wang, E., Lin, S.H. and Huang, S.L. (2010), "A quantitative measurement of concrete air content using image analyses", Comput. Concrete, 7(3), 239-247. https://doi.org/10.12989/cac.2010.7.3.239.
- Karahan, O. (2011), "Residual compressive strength of fire-damaged mortar after post-fire-air-curing", Fire Mater., 35(8), 561-567. https://doi.org/10.1002/fam.1074.
- Karatas, M., Balun, B. and Benli, A. (2017), "High temperature resistance of self-compacting lightweight mortar incorporating expanded perlite and pumice", Comput. Concrete, 19(2), 121-126. https://doi.org/10.12989/cac.2017.19.2.121.
- Khoury, G.A. (1992), "Compressive strength of concrete at high temperatures: a reassessment", Mag. Concrete Res., 44(161), 291-309. https://doi.org/10.1680/macr.1992.44.161.291.
- Kim, G.J. and Kwak, H.G. (2017), "Depth-dependent evaluation of residual material properties of fire-damaged concrete", Comput. Concrete, 20(4), 503-509. https://doi.org/10.12989/cac.2017.20.4.503.
-
Li, L., Jia, P., Dong, J., Shi, L., Zhang, G. and Wang, Q. (2017a), "Effects of cement dosage and cooling regimes on the compressive strength of concrete after post-fire-curing from
$800^{\circ}C$ ", Constr. Build. Mater., 142, 208-220. https://doi.org/10.1016/j.conbuildmat.2017.03.053. - Li, M., Mao, X., Cao, L., Pu, H. and Lu, A. (2017b), "Influence of heating rate on the dynamic mechanical performance of coal measure rocks", Int. J. Geomech., 17(8), 04017020. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000888.
- Li, Q., Yuan, G. and Shu, Q. (2014), "Effects of heating/cooling on recovery of strength and carbonation resistance of fire-damaged concrete", Mag. Concrete Res., 66(18), 925-936. https://doi.org/10.1680/macr.14.00029.
- Lin, W.M., Lin, T.D. and Powers-Couche, L.J. (1996), "Microstructures of fire-damaged concrete", ACI Mater. J., 93(3), 199-205.
- Lin, Y., Hsiao, C., Yang, H. and Lin, Y.F. (2011), "The effect of post-fire-curing on strengthvelocity relationship for nondestructive assessment of fire-damaged concrete strength", Fire Saf. J., 46(4), 178-185. https://doi.org/10.1016/j.firesaf.2011.01.006.
- Liu, S. and Xu, J. (2015), "An experimental study on the physico-mechanical properties of two post-high-temperature rocks", Eng. Geol. 185, 63-70. https://doi.org/10.1016/j.enggeo.2014.11.013.
- Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K. (2015), "Mechanical properties of concrete at high temperature-A review", Constr. Build. Mater., 93, 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131.
- Mantellato, S., Palacios, M. and Flatt, R.J. (2016), "Impact of sample preparation on the specific surface area of synthetic ettringite", Cement Concrete Res., 86, 20-28. https://doi.org/10.1016/j.cemconres.2016.04.005.
- Park, S.J., Yim, H.J. and Kwak, H.G. (2015), "Effects of post-fire curing conditions on the restoration of material properties of fire-damaged concrete", Constr. Build. Mater., 99, 90-98. https://doi.org/10.1016/j.conbuildmat.2015.09.015.
- Peng, S.S., Wang, E.H., Wang, H.Y. and Chou, Y.T. (2012), "Quality assessment of high performance concrete using digitized image elements", Comput. Concrete, 10(4), 409-417. https://doi.org/10.12989/cac.2012.10.4.409.
- Piasta, J., Sawicz, Z. and Rudzinski, L. (1984), "Changes in the structure of hardened cement paste due to high temperature", Materiaux Constr., 17(4), 291-296. https://doi.org/10.1007/BF02479085.
- Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L. (2001), "Strength and durability recovery of fire-damaged concrete after post-fire-curing", Cement Concrete Res., 31(9), 1307-1318. https://doi.org/10.1016/S0008-8846(01)00582-8.
- Sarshar, R. and Khoury, G.A. (1993), "Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures", Mag. Concrete Res., 45(162), 51-61. https://doi.org/10.1680/macr.1993.45.162.51.
- Schneider, U. (1988), "Concrete at high temperatures-A general review", Fire Saf. J., 13(1), 55-68. https://doi.org/10.1016/0379-7112(88)90033-1.
- Shui, Z., Xuan, D., Wan, H. and Cao, B. (2008), "Rehydration reactivity of recycled mortar from concrete waste experienced to thermal treatment", Constr. Build. Mater., 22(8), 1723-1729. https://doi.org/10.1016/j.conbuildmat.2007.05.012.
- Wang, G., Zhang, C., Zhang, B., Li, Q. and Shui, Z. (2015), "Study on the high-temperature behavior and rehydration characteristics of hardened cement paste", Fire Mater., 39(8), 741-750. https://doi.org/10.1002/fam.2269.
- Wu, D., Liu, G., Chen, S. and Sun, R. (2015), "An experimental investigation on heating rate effect in the thermal behavior of perhydrous bituminous coal during pyrolysis", J. Therm. Anal. Calorim., 119(3), 2195-2203. https://doi.org/10.1007/s10973-015-4401-y.
- Xuan, D.X. and Shui, Z.H. (2011), "Rehydration activity of hydrated cement paste exposed to high temperature", Fire Mater., 35(7), 481-490. https://doi.org/10.1002/fam.1067.
- Yang, S.Q., Ranjith, P.G., Jing, H.W., Tian, W.L. and Ju, Y. (2017), "An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments", Geothermics, 65, 180-197.https://doi.org/10.1016/j.geothermics.2016.09.008.
- Zhang, Q. and Ye, G. (2012), "Dehydration kinetics of Portland cement paste at high temperature", J. Therm. Anal. Calorim., 110(1), 153-158. https://doi.org/10.1007/s10973-012-2303-9.