• Title/Summary/Keyword: Cu-Al alloy

Search Result 447, Processing Time 0.024 seconds

Dissolution and Melting Phenomenon of Al2Cu according to Solution Treatment Temperature of Al12Si3Cu alloy (Al-Si-Cu합금의 용체화 처리 온도에 따른 Al2Cu 용해와 용융 현상)

  • Lee, Seunggwan;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • In this study, dissolution and melting phenomenon of the Al2Cu was studied for the high-strength Al-Si-Cu aluminum alloy in automobile component. The Solution heat treatment was performed at 480℃ and 510℃ for 4hours. Microstructure analysis of the specimen was performed using the optical micrograph and scanning electron microscope for qualitative and quantitative analysis of various phases, the chemical composition of secondary phases was achieved by energy dispersive spectroscopy (EDS) and electron probe micro analysis (EPMA). As a result of the electron probe micro analysis, a plate like Al2Cu phase was observed, and eutectic Si phase was observed of a coarsen plate shape. At a temperature of 510, necking phenomenon occurs in a specific part of plate like Al2Cu, and it is segmented and dissolved in the Al matrix. When the temperature of the alloy exceeds the melting point of Al2Cu, incipient melting occurs at the grain boundary of undissolved Cu particles

Microstructural Control of Al-Sn Alloy with Addition of Cu and Si (Cu와 Si 첨가에 의한 Al-Sn 합금의 미세조직 제어)

  • Son, Kwang Suk;Park, Tae Eun;Kim, Jin Soo;Kang, Sung Min;Kim, Tae Hwan;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • The effect of various alloying elements and melt treatment on the microstructural control of Al-Sn metallic bearing alloy was investigated. The thickness of tin film crystallized around primary aluminum decreased with the addition of 5% Cu in Al-Sn alloy, with tin particles being reduced in size by intervening the Ostwald ripening. With the addition of Si in Al-10%Sn alloy, the tin particles were crystallized with eutectic silicon, resulting in uniform distribution of tin particles. With the addition of Cu and Si in Al-Sn alloy, both the tensile strength and yield strength increased, with the increasing rate of yield strength being less than that of tensile strength. Although the Al-10%Sn-7%Si alloy has similar tensile strength compared with Al-10%Sn-5%Cu, the former showed superior abrasion resistance, resulting from preventing the tin particles from movement to the abrasion surface.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling (Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향)

  • Junho Lee;Seonghyun Park;Sang-Hwa Lee;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.

Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting (복합주조용 Al-Si-Mg합금의 미세조직 및 인장성질에 미치는 Fe 및 Cu 첨가의 영향)

  • Kim, Jeong-Min;Jung, Ki-Chae;Kim, Chae-Young;Shin, Je-sik
    • Journal of Korea Foundry Society
    • /
    • v.41 no.1
    • /
    • pp.3-10
    • /
    • 2021
  • In the compound casting between the aluminum alloy and the cast iron, the iron component may be dissolved from the cast iron during the process and mixed into the aluminum melt, thereby forming various iron-containing intermetallic compounds and significantly deteriorating the tensile properties of the aluminum alloy. On the other hand, unlike Fe, which is added as an impurity, Cu is added to improve the mechanical properties of the aluminum alloy. In this study, the change in microstructure and tensile properties of aluminum alloys due to the addition of Fe and Cu was investigated. A large amount of iron-containing compounds such as coarse Al5FeSi phases were formed when the iron content was 1% or more, and the tensile properties were significantly reduced. In the case of the aluminum alloy to which Cu was added, an Al2Cu phase was additionally formed and the tensile strength was clearly improved.

Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature (Al-Si-Mg-Cu 합금의 자동차 엔진 사용 온도에서 열처리 조건에 따른 열확산도 변화)

  • Choi, Se-Weon
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.642-648
    • /
    • 2021
  • The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 ℃ for 6 h, followed by water cooling, and samples were artificially aged in air at 180 ℃ and 220 ℃ for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 ℃ and above 300 ℃, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 ℃ and 400 ℃, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 ℃ and 400 ℃ was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.

The Optimal Solution Treatment Condition in a Al-Si-Cu AC2B Alloy (Al-Si-Cu계 AC2B 합금의 최적 용체화 처리 조건)

  • Jung, Jae-Gil;Park, June-Soo;Ha, Yang-Soo;Lee, Young-Kook;Jun, Joong-Hwan;Kang, Hee-Sam;Lim, Jong-Dae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.223-227
    • /
    • 2009
  • The precipitates, hardness, and tensile properties of Al-6.2Si-2.9Cu AC2B alloy were investigated with respect to solution treatment time at $500^{\circ}C$. $Al(Cu)-Al_2Cu$ eutectic, Si, ${\theta}-(Al_2Cu)$, and $Q-(Al_5Cu_2Mg_8Si_6)$ phases were observed in the as-cast specimen. With increasing the solution treatment time at $500^{\circ}C$, the $Al(Cu)-Al_2Cu$ eutectic and ${\theta}-(Al_2Cu)$ phases were gradually reduced and finally almost disappeared in 5 h. The mechanical properties, such as hardness, tensile strength, and elongation, were improved with solution treatment time until about 5 h due to the dissolution of the $Al_2Cu$ particles. With further holding time, the mechanical properties did not change much. The solution treated specimens for over 5 h at $500^{\circ}C$ exhibit almost the same tensile properties even after aging at $250^{\circ}C$ for 3.5 h. Accordingly, the optimal solution treatment condition of the Al-Si-Cu AC2B alloy is considered to be 5 h at $500^{\circ}C$.

Effects of Alloying Element and Heat-Treatment Condition on the Strength of Squeeze-Casted Al-3.0 wt%Si Alloy (용탕 단조 Al-3.0 wt%Si 합금의 강도에 미치는 합금 원소 및 열처리 조건의 영향)

  • Lee, Hag-Ju;Hwang, Jae-Hyoung;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.26 no.6
    • /
    • pp.249-257
    • /
    • 2006
  • The effects of alloying element and the condition of heat-treatment on the strength of squeeze-cast Al-3.0 wt%Si alloy were investigated. The strength of the alloy without grain refinement was increased with increase Cu content upto 3.0 wt% and rather decreased beyond that. The tensile strength of the alloy with grain refinement increased with Cu content upto 3.0 wt% and not changed beyond that. The strength of the alloy without grain refinement increased with the Mg content. The tensile strength with grain refinement increased with the Mg content upto 0.50 wt% and then decreased beyond that. The strength of the grain refined alloy increased by individual and simultaneous additions of Cu and Mg and the maximum strength was obtained with Al-3.0 wt%Si-4.5 wt%Cu-0.50 wt%Mg alloy. The optimum heat-treatment condition for this alloy was obtained.

Semi-Solid Forming of Al-Zn-Mg-Cu Alloy Applying Low-Temperature Casting Process (저온 주조법을 응용한 Al-Zn-Mg-Cu 합금의 반응고 성형)

  • Kim, Jeong-Min;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.82-88
    • /
    • 2002
  • Al-5.5Zn-2.5Mg-l.5Cu semi-solid slurry was prepared by cooling the liquid metal with a low superheat to a solid and liquid co-existing temperature. Relatively round solid particles could be obtained in the slurry through the simple process. The prepared slurry was deformed into the metallic mold by a press and the mechanical properties of obtained specimens were investigated. Mold filling ability of the alloy slurry was also investigated and compared with that of A356 alloy. Al-Zn-Mg-Cu alloy showed lower mold filling ability than A356 alloy probably because small amount of eutectic phase is present and the heat of fusion generated during solidification is smaller than that of A356 alloy.

Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy (개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향)

  • Park, T.H.;Baek, M.S.;Yoon, S.I.;Kim, J.P.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

A Study on RF High Power Durability of Al-Cu Alloy Electrodes Used in Ladder-type SAW(surface acoustic wave) Filters (Al-Cu 합금 전극막 구조를 갖는 사다리형 SAW filter의 RF-고전력 내구성 특성 고찰)

  • 김남철;이기선;서수정;김지수;김윤동
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.435-443
    • /
    • 2001
  • As power durable RF SAW filters, AL-(0∼2wt%)Cu alloy multi-layered thin electrodes were deposited on 42° LiTaO$_3$ piezoelectric substrates by magnetron sputtering process, and then ladder-type RF SAW filters, satisfying the electrical specification of CDMA transmission band, were fabricated through optimizing SAW resonator structures. The temperature of film electrodes in SAW filter was increased with RF power, and reached the maxima to cause a failure of SAW filters at the cut-off frequencies of the RF filter band. As RF power increases, the electrodes of Al-Cu alloy showed higher power durability than that of pure Al. The multi-layer laminated film of Al-1wt.% Cu/Cu/Al-1wt%Cu resulted in the best power durability up to 4W of RF power. Every film electrode, however, was destroyed within seconds whenever applying a critical RF power to SAW filters, regardless of the composition and structure of film electrodes. The breakdown of film electrodes under FR power seems to believe due to the fatigue of electrodes caused by repetitive cyclic stress of surface acoustic wave, which is amplified as RF power increases.

  • PDF