DOI QR코드

DOI QR Code

Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature

Al-Si-Mg-Cu 합금의 자동차 엔진 사용 온도에서 열처리 조건에 따른 열확산도 변화

  • Received : 2021.09.15
  • Accepted : 2021.11.10
  • Published : 2021.11.27

Abstract

The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 ℃ for 6 h, followed by water cooling, and samples were artificially aged in air at 180 ℃ and 220 ℃ for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 ℃ and above 300 ℃, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 ℃ and 400 ℃, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 ℃ and 400 ℃ was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.

Keywords

Acknowledgement

This research was financially supported by the regional headquarters representative project of the Korea Institute of Industrial Technology (Project number: JA210005) "Development of key element technologies for smart mobility (2/6)".

References

  1. R. E. Smallman and R. J. Bishop, Modern Physical Metallurgy and Materials Engineering, 6th ed., p. 316, Butterworth-Heinemann, Oxford (1999).
  2. C. Y. Jeong, Mater. Trans., 54, 588 (2013). https://doi.org/10.2320/matertrans.M2012285
  3. F. J. Tavitas-Medrano, A. M. A. Mohamed, J. E. Gruzleski, F. H. Samuel and H. W. Doty, J. Mater. Sci., 45, 641 (2010). https://doi.org/10.1007/s10853-009-3978-6
  4. S. Aksoz, Y. Ocak, N. Maras, E. Cadirli, H. Kaya and U. Boyuk, Exp. Therm. Fluid Sci., 34, 1507 (2010). https://doi.org/10.1016/j.expthermflusci.2010.07.015
  5. R. N. Lumley, I. J. Polmear, H. Groot and J. Ferrier, Scr. Mater., 58, 1006 (2008). https://doi.org/10.1016/j.scriptamat.2008.01.031
  6. E. W. Lee, T. Oppenheim, K. Robinson, B. Aridkahari, N. Neylan, D. Gebreyesus, M. Richardson, M. Arzate, C. Bove, M. Iskandar, C. Sanchez, E. Toss, I. Martinez, D. Arenas, J. Ogren, J. Mclennan, R. Clark, W. E. Frazier and O. S. Es-Said, Eng. Fail. Anal., 14, 1538 (2007). https://doi.org/10.1016/j.engfailanal.2006.12.008
  7. E. Kaschnitz, W. Funk and T. Pabel, High Temp. High Press., 43, 175 (2014).
  8. E. Kaschnitz and R. Ebner, High Temp. High Press., 38, 221 (2009).
  9. E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa and R. MacKay, Mater. Sci. Eng., A, 648, 401 (2015). https://doi.org/10.1016/j.msea.2015.09.091
  10. C. Jeong, Mater. Trans., 53, 234 (2012). https://doi.org/10.2320/matertrans.M2011259
  11. M. Hamzwhei and M. Rashidi, Therm. Eng. Environ., 2006, 153 (2006).
  12. T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications, p. 21, Kluwer Academic/Plenum, New York (2004).
  13. F. Grosselle, G. Timelli and F. Bonollo, Mater. Sci. Eng., A, 527, 3536 (2010). https://doi.org/10.1016/j.msea.2010.02.029
  14. D. J. Chakrabarti and D. E. Laughlin, Progr. Mater. Sci., 49, 389 (2004). https://doi.org/10.1016/S0079-6425(03)00031-8
  15. W. F. Miao and D. E. Laughlin, Metall. Mater. Trans. A, 31, 361 (2000). https://doi.org/10.1007/s11661-000-0272-2
  16. D. J. Chakrabarti, Y. Peng, D. E. Laughlin, Mater. Sci. Forum, 396-402, 857 (2002). https://doi.org/10.4028/www.scientific.net/MSF.396-402.857
  17. A. Biswas, D. J. Siegel and D. N. Seidman, Acta Mater., 75, 322 (2014). https://doi.org/10.1016/j.actamat.2014.05.001
  18. E. Sjolander and S. Seifeddine, J. Mater. Process. Tech., 210, 1249 (2010). https://doi.org/10.1016/j.jmatprotec.2010.03.020
  19. F. Lasagni, B. Mingler, M. Dumont and H. P. Degischer, Mater. Sci. Eng., A, 480, 383 (2008). https://doi.org/10.1016/j.msea.2007.07.008
  20. R. X. Li, R. D. Li, Y. H. Zhao, L. Z. He, C. X. Li, H. R. Guan and Z. Q. Hu, Mater. Lett., 58, 2096 (2004). https://doi.org/10.1016/j.matlet.2003.12.027
  21. E. Sjolander and S. Seifeddine, Mater. Sci. Eng., A, 528, 7402 (2011). https://doi.org/10.1016/j.msea.2011.06.036
  22. A. K. Mukhopadhyay, Q. B. Yang and S. R. Singh, Acta Metall. Mater., 42, 3083 (1994). https://doi.org/10.1016/0956-7151(94)90406-5
  23. S. Abis, M. Massazza, P. Mengucci and G. Riontino, Scr. Mater., 45, 685 (2001). https://doi.org/10.1016/S1359-6462(01)01080-6