DOI QR코드

DOI QR Code

Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling

Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향

  • Junho Lee (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seonghyun Park (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Sang-Hwa Lee (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seung Bae Son (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seok-Jae Lee (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jae-Gil Jung (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 이준호 (전북대학교 신소재공학부) ;
  • 박성현 (전북대학교 신소재공학부) ;
  • 이상화 (전북대학교 신소재공학부) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부) ;
  • 정재길 (전북대학교 신소재공학부)
  • Received : 2023.10.29
  • Accepted : 2023.10.31
  • Published : 2023.12.28

Abstract

The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. RS-2023-00217415). 전자현미경 분석에 도움을 주신 전북대학교 공동실험실습관(Center for University-wide Research Facilities, CURF)에 감사드립니다.

References

  1. B. Stojanovic, M. Bukvic and I. Epler: Appl. Eng. Lett., 3 (2018) 52.
  2. N. Seo, J. Jeon, S.-H. Lee, K. Euh, S.-H. Kim, T.-Y. Ahn, S. B. Son, S.-J. Lee and J.-G. Jung: J. Alloys Compd., 944 (2023) 169192.
  3. J.-G. Jung, Y.-H. Cho, S.-D. Kim, S.-B. Kim, S.-H. Lee, K. Song, K. Euh and J.-M. Lee: Acta Mater., 199 (2020) 73.
  4. S.-H. Lee, J.-G. Jung, S.-I. Baik, D. N. Seidman, M.-S. Kim, Y.-K. Lee and K. Euh: Mater. Sci. Eng. A, 803 (2021) 140719. https://doi.org/10.1016/j.msea.2020.140719
  5. S. H. Kayani, J.-G. Jung, M.-S. Kim and K. Euh: Met. Mater. Int., 26 (2020) 1079.
  6. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre and B. Baroux: Acta Mater., 58 (2010) 248.
  7. S. Park, J. Yeo, S. Han and H. Choi: J. Powder Mater., 30 (2023) 223.
  8. S. C. Altiparmak, V. A. Yardley, Z. Shi and J. Lin: Int. J. Lightweight Mater. Manuf., 4 (2021) 246.
  9. N. Kaufman, M. Imran, T. M. Wischeropp, C. Emmelmann, S. Siddique and F. Walther: Physics Procedia., 83 (2016) 918.
  10. R. Casati, M. Coduri, M. Riccio, A. Rizzi and M. Vedani: J. Aloys Compd., 801 (2019) 243.
  11. J. Lee, W. Shin, J. Jeon, S. B. Son, S.-J. Lee and J.-G. Jung: Powder Metall., (in press).
  12. S.-H. Lee, J.-G. Jung, S.-I. Baik, S. H. Park, M.-S. Kim, Y.-K. Lee and K. Euh: Mater. Sci. Eng. A, 801 (2021) 140437. https://doi.org/10.1016/j.msea.2020.140437
  13. G. A. Sweet, B. S. Amirkhiz, B. W. Williams, A. Taylor, R. L. Hexemer, I. W. Donaldson and D. P. Bishop: Mater. Charact., 151 (2019) 342.
  14. C. Wolverton: Acta Mater., 49 (2001) 3129.
  15. C. R. Hubbard, H. E. Swanson and F. A. Mauer: J. Appl. Crystallogr., 8 (1975) 45.
  16. Y. Komura and K. Tokunaga: Acta Crystallogr., Sect. B: Struct. Sci., 36 (1980) 1548.
  17. E. A. Owen and G. D. Preston: Proc. Phys. Soc. London, 36 (1923) 341.
  18. P. Villars and L. D. Calvert: American Society of Metals, Cleveland, OH, (1985).
  19. J. B. Friauf: J. Am. Chem. Soc., 49 (1927) 3107.
  20. S. Sasaki, K. Fujino and Y. Takѐuchi: Proc. Jpn. Acad. B: Phys. Biol. Sci., 55 (1979) 43.
  21. M. Vlach, J. Cizek, V. Kodetova, M. Leibner, M. Cieslar, P. Harcuba, L. Bajtosova, H. Kudrnova, T. Vlasak, V. Neubert, E. Cernoskova and P. Kutalek: Mater. Des., 193 (2020) 108821.
  22. K. Bodisova, D. Galusekb, P. Svancarekb, V. Pouchlyc and K. Maca: Ceram. Int., 41 (2015) 11975.
  23. E. O. Hall and G. K. Williamson: Proc. Phys. Soc. London, Sect. B, 64 (1951) 747.
  24. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D. N. Seidman, E. J. Lavernia and J. M. Schoenung: Acta Mater., 62 (2014) 141.