Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.10.642

Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature  

Choi, Se-Weon (Korea Institute of Industrial Technology)
Publication Information
Korean Journal of Materials Research / v.31, no.11, 2021 , pp. 642-648 More about this Journal
Abstract
The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 ℃ for 6 h, followed by water cooling, and samples were artificially aged in air at 180 ℃ and 220 ℃ for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 ℃ and above 300 ℃, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 ℃ and 400 ℃, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 ℃ and 400 ℃ was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.
Keywords
Al-Si-Mg-Cu alloy; thermal diffusivity; thermal conductivity; aging heat treatment; precipitation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Jeong, Mater. Trans., 53, 234 (2012).   DOI
2 M. Hamzwhei and M. Rashidi, Therm. Eng. Environ., 2006, 153 (2006).
3 R. N. Lumley, I. J. Polmear, H. Groot and J. Ferrier, Scr. Mater., 58, 1006 (2008).   DOI
4 E. Kaschnitz, W. Funk and T. Pabel, High Temp. High Press., 43, 175 (2014).
5 F. J. Tavitas-Medrano, A. M. A. Mohamed, J. E. Gruzleski, F. H. Samuel and H. W. Doty, J. Mater. Sci., 45, 641 (2010).   DOI
6 E. W. Lee, T. Oppenheim, K. Robinson, B. Aridkahari, N. Neylan, D. Gebreyesus, M. Richardson, M. Arzate, C. Bove, M. Iskandar, C. Sanchez, E. Toss, I. Martinez, D. Arenas, J. Ogren, J. Mclennan, R. Clark, W. E. Frazier and O. S. Es-Said, Eng. Fail. Anal., 14, 1538 (2007).   DOI
7 A. Biswas, D. J. Siegel and D. N. Seidman, Acta Mater., 75, 322 (2014).   DOI
8 A. K. Mukhopadhyay, Q. B. Yang and S. R. Singh, Acta Metall. Mater., 42, 3083 (1994).   DOI
9 E. Sjolander and S. Seifeddine, J. Mater. Process. Tech., 210, 1249 (2010).   DOI
10 F. Lasagni, B. Mingler, M. Dumont and H. P. Degischer, Mater. Sci. Eng., A, 480, 383 (2008).   DOI
11 R. X. Li, R. D. Li, Y. H. Zhao, L. Z. He, C. X. Li, H. R. Guan and Z. Q. Hu, Mater. Lett., 58, 2096 (2004).   DOI
12 T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications, p. 21, Kluwer Academic/Plenum, New York (2004).
13 W. F. Miao and D. E. Laughlin, Metall. Mater. Trans. A, 31, 361 (2000).   DOI
14 D. J. Chakrabarti, Y. Peng, D. E. Laughlin, Mater. Sci. Forum, 396-402, 857 (2002).   DOI
15 C. Y. Jeong, Mater. Trans., 54, 588 (2013).   DOI
16 E. Sjolander and S. Seifeddine, Mater. Sci. Eng., A, 528, 7402 (2011).   DOI
17 F. Grosselle, G. Timelli and F. Bonollo, Mater. Sci. Eng., A, 527, 3536 (2010).   DOI
18 D. J. Chakrabarti and D. E. Laughlin, Progr. Mater. Sci., 49, 389 (2004).   DOI
19 S. Abis, M. Massazza, P. Mengucci and G. Riontino, Scr. Mater., 45, 685 (2001).   DOI
20 R. E. Smallman and R. J. Bishop, Modern Physical Metallurgy and Materials Engineering, 6th ed., p. 316, Butterworth-Heinemann, Oxford (1999).
21 S. Aksoz, Y. Ocak, N. Maras, E. Cadirli, H. Kaya and U. Boyuk, Exp. Therm. Fluid Sci., 34, 1507 (2010).   DOI
22 E. Kaschnitz and R. Ebner, High Temp. High Press., 38, 221 (2009).
23 E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa and R. MacKay, Mater. Sci. Eng., A, 648, 401 (2015).   DOI