Browse > Article
http://dx.doi.org/10.12656/jksht.2022.35.1.1

Dissolution and Melting Phenomenon of Al2Cu according to Solution Treatment Temperature of Al12Si3Cu alloy  

Lee, Seunggwan (Department of Advanced Materials Engineering, Chosun University)
Kim, Chungseok (Department of Materials Science and Engineering, Chosun University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.35, no.1, 2022 , pp. 1-7 More about this Journal
Abstract
In this study, dissolution and melting phenomenon of the Al2Cu was studied for the high-strength Al-Si-Cu aluminum alloy in automobile component. The Solution heat treatment was performed at 480℃ and 510℃ for 4hours. Microstructure analysis of the specimen was performed using the optical micrograph and scanning electron microscope for qualitative and quantitative analysis of various phases, the chemical composition of secondary phases was achieved by energy dispersive spectroscopy (EDS) and electron probe micro analysis (EPMA). As a result of the electron probe micro analysis, a plate like Al2Cu phase was observed, and eutectic Si phase was observed of a coarsen plate shape. At a temperature of 510, necking phenomenon occurs in a specific part of plate like Al2Cu, and it is segmented and dissolved in the Al matrix. When the temperature of the alloy exceeds the melting point of Al2Cu, incipient melting occurs at the grain boundary of undissolved Cu particles
Keywords
Al12Si3Cu; Solution treatment; $Al_2Cu$ dissolution; Incipient melting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. B. Chyun, S. P. Hong, and C. S. Kim : J. Korean Soc. Heat Treatment, 27 (2014) 281-287.   DOI
2 L. Ceschini, I. Boromei, A. Morri, S. Seifeddine, and I. L. Svensson : Mater. Des., 36 (2012) 522-528.   DOI
3 A. M. Samuel, J. Gauthier, and F. H. Samuel : Metall. Mater. Trans. A, 27 (1996) 1785-1798.   DOI
4 A. Lombardi, W. Mu, C. Ravindran, N. Dogan, and M. Barati : J. Alloy Comp., 747 (2018) 131-139.   DOI
5 K. Sunitha and K. Gurusami : Mater. Today, 43 (2021) 1825-1829.
6 S. G. Park and C . S. Kim : J. Korean Soc. Heat Treatment, 31 (2018) 97-103.   DOI
7 K. Sasaki and T. Takahashi : Int. J. Fatigue, 28 (2006) 203-210.   DOI
8 H. Yang, S. Ji, and Z. Fan : Mater. Des., 85 (2015) 823-832.   DOI
9 N. Kumar, S. Soni, and R. S. Rama : Int. J. Mech. Eng., 5 (2017) 47-51.
10 R. N. Lumley, R. G. O'Donnell, D. R. Gunasegaram, and M. Givord : Mater. Trans., 38 (2007) 2564-2574.   DOI
11 S. Beroual, Z. Boumerzoug, P. Paillard, and P. Borjon : J. Alloy Comp., 784 (2019) 1026-1035.   DOI
12 P. S. Wang, S. L. Lee, J. C. Lin, and M. T. Jahn : J. Mater. Res., 15 (2000) 2021-2035.
13 L. Lasa and J. M. Rodriguez-Ibabe : Mater. Char., 48 (2002) 371-378.   DOI
14 O. Reiso, H.G. Overlie, and N. Ryum : Metall. Trans. A., 21 (1990) 1689-1695.   DOI
15 A. Lombardi, C. Ravindran, and R. MacKay : J. Mater. Eng., 24 (2015) 2179-2184.
16 B. Andilab, C. Ravindran, N. Dogan, A. lombardi, and G. Byczynski : Mater. Char., 159 (2015) 2179-2184.
17 E. R. Wang, X. D. Hui, and G. L. Chen : Mater. Des., 32 (2011) 4333-4340.   DOI
18 Y. M. Han, A. M. Samuel, F. H. Samuel, and H. W. Doty : Int. J. Cast Metal. Res., 21 (2008) 387-393.   DOI
19 E. Sjolander and S. Seifeddine : Mater. Des., 31 (2010) S44-S49.   DOI
20 K. Du, Q. Zhu, D. Li, and F. Zhang : Mater. Char., 106 (2015) 134-140.   DOI
21 S. Morin, E. M. Elgallad, H. W. Doty, S. Valtierra, and F. H. Samuel : Adv. Mater. Sci. Eng., 1 (2016) 456-467.
22 A. M. A. Mohamed, F. H. Samuel, and S. Al kahtani : Mater. Sci. Eng. A, 543 (2012) 22-34.   DOI
23 E. Sjolander and S. Seifeddine : J. Mater. Process. Tech., 210 (2010) 1249-1259.