Browse > Article
http://dx.doi.org/10.7777/jkfs.2021.41.1.3

Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting  

Kim, Jeong-Min (Department of Advanced Materials Engineering, Hanbat National University)
Jung, Ki-Chae (Department of Advanced Materials Engineering, Hanbat National University)
Kim, Chae-Young (Department of Advanced Materials Engineering, Hanbat National University)
Shin, Je-sik (Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology)
Publication Information
Journal of Korea Foundry Society / v.41, no.1, 2021 , pp. 3-10 More about this Journal
Abstract
In the compound casting between the aluminum alloy and the cast iron, the iron component may be dissolved from the cast iron during the process and mixed into the aluminum melt, thereby forming various iron-containing intermetallic compounds and significantly deteriorating the tensile properties of the aluminum alloy. On the other hand, unlike Fe, which is added as an impurity, Cu is added to improve the mechanical properties of the aluminum alloy. In this study, the change in microstructure and tensile properties of aluminum alloys due to the addition of Fe and Cu was investigated. A large amount of iron-containing compounds such as coarse Al5FeSi phases were formed when the iron content was 1% or more, and the tensile properties were significantly reduced. In the case of the aluminum alloy to which Cu was added, an Al2Cu phase was additionally formed and the tensile strength was clearly improved.
Keywords
Al-Si-Mg alloy; Iron content; Cu; Compound casting and Microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Wu, H. Zhang, Z. Ma, T. Tao, J. Gui, W. Song, B. Yang and H. Zhang, J. Alloys Compd., 786 (2019) 205.   DOI
2 R. Chen, Q. Xu, H. Guo, Z. Xia, Q. Wu and B. Liu, Mater. Sci. A, A685 (2017) 391.
3 R. Taghiabadi, A. Fayegh, A. Pakbin, M. Nazari and M.H. Ghoncheh, Trans. Nonferrous Met. Soc. China, 28(7) (2018) 1275.   DOI
4 H. Ding, W. Hu, Y. Duan, X. Wang and C. Dong, J. Mater. Process. Tech., 212(2) (2012) 458.   DOI
5 J.M. Yu, N. Wanderka, A. Rack, R. Daudin, E. Boller, H. Markotter, A. Manzoni, F. Vogel, T. Arlt, I. Manke and J. Banhart, J. Alloys Compd., 766 (2018) 818.   DOI
6 J.M. Yu, N. Wanderka, A. Rack, R. Daudin, E. Boller, H. Markotter, A. Manzoni, F. Vogel, T. Arlt, I. Manke and J. Banhart, Acta Mater., 129 (2017) 194.   DOI
7 PANDAT, CompuTherm, LLC, Madison, WI, USA. Available online: http://www.computherm.com
8 Kim DH, Kim JH and E. Kobayashi, Mater. Sci. Eng. A, 768 (2019) 138449.   DOI
9 Shin JS, Kim TH, Lim KM, Cho H, Yang DH, Jeong CY and Yi S, J. Alloys Compd., 778 (2019) 170.   DOI
10 S. Sakow, T. Tokunaga, M. Ohno and K. Matsuura, J. Mater. Process. Tech., 277 (2020) 116.
11 A. Gorny, J. Manickaraj, Z. Cai and S. Shankar, J. Alloys Compd., 577 (2013) 103.   DOI
12 E. Moosavi-Khoonsari, F. Jalilian, F. Paray, D. Emadi and R.A.L. Drew, Mater. Sci. Technol., 27(11) (2011) 1707.   DOI
13 S.G. Denner and R.D. Jones, Met. Technol., 4 (1977) 167.   DOI
14 Kim BH and Lee SM, J.Korea Foundry Society, 29(5) (2009) 225.
15 H. Becker, T. Bergh, P.E. Vullum, A. Leineweber and Y. Li, Materialia, 5 (2019) 100198.   DOI
16 J.A. Taylor, Procedia Mater. Sci., 1 (2012) 19-33.   DOI
17 C.B. Basak, A. Meduri and N.H. Babu, Mater. Design, 182 (2019) 108017.   DOI
18 Kim JM, Shin K and Shin JS, Metals, 10(6) (2020) 759.   DOI
19 B. Dangi, T.W. Brown and K.N. Kulkarni, J. Alloys Compd., 769 (2018) 777.   DOI
20 W. Jiang, G. Li, Z. Jiang, Y. Wu and Z. Fan, Mater. Sci. Technol., 34(12) (2018) 1519.   DOI
21 V.N. Yeremenko, Y.V. Natanzon and V.I. Dybkov, J. Mater. Sci., 16(7) (1981) 1748.   DOI
22 M. Yan and Z. Fan, J. Mater. Sci., 36(1) (2001) 285.   DOI
23 M. Sacinti, E. Cubuklusu, and Y. Birol, Int. J. Cast Met. Res., 30(2) (2017) 96.   DOI