• Title/Summary/Keyword: Cu nanoparticles

Search Result 193, Processing Time 0.035 seconds

Synthesis and Characterization of Water Soluble Fluorescent Copper Nanoparticles

  • Yu, Ji Soo;Kim, Sung Hun;Man, Minh Tan;Lee, Hong Seok
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.75-77
    • /
    • 2018
  • The electrostatic interaction between emerging quantum-confined nanostructures with plasmonic structures is crucial for future biological applications. Water-soluble green fluorescent copper nanoparticles (Cu-NPs) were fabricated. We demonstrate that L-ascorbic acid is considered as a key to precisely control small Cu-NPs and the capability of the surface ligands, while cetyltrimethylammonium bromide is used as a stabilizing agent controls the particle growth, and stabilizes the nanoparticles. Water-soluble green fluorescent Cu-NPs are tunable through modification of the reaction periods.

Modeling and experimental production yield of 64Cu with natCu and natCu-NPs in Tehran Research Reactor

  • Karimi, Zahra;Sadeghi, Mahdi;Ezati, Arsalan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.269-274
    • /
    • 2019
  • $^{64}Cu$ is a favorable radionuclide in nuclear medicine applications because of its unique characteristics such as three types of decay (electron capture, ${\beta}^-$ and ${\beta}^+$) and 12.7 h half-life. Production of $^{64}Cu$ by irradiation $^{nat}Cu$ and $^{nat}CuNPs$ in Tehran Research Reactor was investigated. The characteristics of copper nanoparticles were investigated with SEM, TEM and XRD analysis. The cross section of $^{63}Cu(n,{\gamma})^{64}Cu$ reaction was done with TALYS-1.8 code. The activity value of $^{64}Cu$ was calculated with theoretical approach and MCNPX-2.6 code. The results were compared with related experimental results which showed good adaptations between them.

Antimicrobial Evaluation and Characterization of Copper Nanoparticles Synthesized by the Simple Chemical Method

  • Wazir, Arshad Hussain;Khan, Qudratullah;Ahmad, Nisar;Ullah, Faizan;Quereshi, Imdadullah;Ali, Hazrat
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.80-84
    • /
    • 2022
  • Copper nanoparticles (CuNPs) are considered of great importance due to their high catalytic and antimicrobial activities. This study focuses on the preparation and characterization of CuNPs, and on their antibacterial/antifungal activities. A copper salt (copper sulfate pentahydrate) as precursor, starch as stabilizing agent, and ascorbic acid as reducing agent were used to fabricate CuNPs. The resulting product was characterized via different techniques such as X-ray diffractrometry (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) to confirm its characteristic properties. Employing the Scherrer formula, the mean crystallite sizes of copper (Cu) and cuprous oxide (Cu2O) nanocrystals were found to be 29.21 and 25.33 nm, respectively, as measured from the main X-ray diffraction peaks. The functional groups present in the resulting CuNPs were confirmed by FTIR. In addition, the engineered CuNPs showed antibacterial and antifungal activity against tested pathogenic bacterial and fungal strains.

Magnetic Properties of Nano-Sized CuNi Clusters

  • Jo, Y.;Jung, M.H.;Kyum, M.C.;Park, K.H.;Kim, Y.N.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.156-159
    • /
    • 2006
  • We have studied the magnetic properties of the CuNi nanoparticles for three different sizes prepared by plasma and chemical techniques. The magnetization is enormously enhanced with decreasing the nanoparticle size. This enhanced magnetic moment shows almost inversely linear temperature dependence, which could be interpreted by the Langevin-type superparamagnetism. The field dependence exhibits ferromagnetic-like behavior with weak hysteresis, which could described in terms of uncompensated spin and/or surface anisotropy. In addition, the magnetic data suggest that the CuNi nanoparticles produced by the plasma method result in significantly less oxidized metallic nanoparticles than those prepared by other techniques.

Cu-based ink-jet printable inks for highly conductive patterns at lower temperature

  • Woo, Kyoo-Hee;Kim, Dong-Jo;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.799-802
    • /
    • 2008
  • The metal films ink-jetted using the conductive ink based on a mixture of copper and silver nanoparticles were investigated. The porosity and resistivity of films were minimized by adjusting the mixing ratio of Cu and Ag nanoparticles. We demonstrated that the printed tracks with good conductivity could be obtained at sufficiently lower annealing temperatures where plastic substrates could be used.

  • PDF

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

Enhanced flux pinning property of GdBa2Cu3O7-x films by ferromagnetic surface decoration

  • Song, C.Y.;Oh, J.Y.;Ko, Y.J.;Lee, J.M.;Kang, W.N.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.21-25
    • /
    • 2020
  • We investigated the flux pinning property of GdBa2Cu3O7-x (GdBCO) films on top of La0.7Sr0.3MnO3 (LSMO) nanoparticles deposited by a surface decoration. Both GdBCO films and LSMO nano particles were deposited by pulsed laser deposition and the number of laser pulses were varied from 80 to 320 in order to control the density of the LSMO nanoparticles. The magnetization data at 77 K showed that the critical current density (Jc) was enhanced in all of the GdBCO films with LSMO nanoparticles and that the Jc enhancement was found to be inversely proportional to the LSMO nanoparticle density. Structural analyses revealed that LSMO nanoparticles induce a compressive strain in the GdBCO films resulting in a disordering in the CuO2 plane. Therefore, the enhanced flux pinning property in the GdBCO with LSMO nanoparticles was attributed to the competing effect between the increase of pinning centers and the increase of compressive strain in the superconducting phase.

Synthesis of Metal Nanoparticles for the Application of Electronic Device (전자장치 응용을 위한 금속(은, 구리) 나노입자의 합성)

  • Jun, Byung-Ho;Cho, Su-Hwan;Cho, Jeong-Min;Kim, Seong-Eun;Kim, Dong-Hoon;Kim, Seong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.53-53
    • /
    • 2010
  • The development of synthetic pathway to produce a highly yield nanoparticles is an important aspect of industrial technology. Herein, we report a simple, rapid approach to synthesize organic-soluble Cu and Ag nanoparticles in colloidal method for the application in a conductive pattern using inkjet printing. The silver nanoparticles have been synthesized in highly concentrated organic phase. The Cu nanoparticles have been synthesized by the reducing of the copper oxide materials using acid molecules in high concentrated organic phase. Their sintering and electric conductivity properties were investigated by melting process between $200^{\circ}C$ and $250^{\circ}C$ for application to printed electronics.

  • PDF

Synthesis and Characterization of TiO2, Cu2O and Al2O3 Aerosol Nanoparticles Produced by the Multi-Spark Discharge Generator

  • Efimov, Alexey;Lizunova, Anna;Sukharev, Valentin;Ivanov, Victor
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.123-129
    • /
    • 2016
  • The morphology, crystal structure and size of aerosol nanoparticles generated by erosion of electrodes made of different materials (titanium, copper and aluminum) in a multi-spark discharge generator were investigated. The aerosol nanoparticle synthesis was carried out in air atmosphere at a capacitor stored energy of 6 J, a repetition rate of discharge of 0.5 Hz and a gas flow velocity of 5.4 m/s. The aerosol nanoparticles were generated in the form of oxides and had various morphologies: agglomerates of primary particles of $TiO_2$ and $Al_2O_3$ or aggregates of primary particles of $Cu_2O$. The average size of the primary nanoparticles ranged between 6.3 and 7.4 nm for the three substances studied. The average size of the agglomerates and aggregates varied in a wide interval from 24.6 nm for $Cu_2O$ to 46.1 nm for $Al_2O_3$.

Reaction Path of Cu2ZnSnS4 Nanoparticles by a Solvothermal Method Using Copper Acetate, Zinc Acetate, Tin Chloride and Sulfur in Diethylenetriamine Solvent

  • Chalapathy, R.B.V.;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae;Kown, HyukSang
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2013
  • $Cu_2ZnSnS_4$ (CZTS) nanoparticles were synthesized by a solvothermal method using copper (II) acetate, zinc acetate, tin chloride, and sulfur in diethylenetriamine solvent. Binary sulfide particles such as CuS, ZnS, SnS, and $SnS_2$ were obtained at $180^{\circ}C$; single-phase CZTS nanoparticles were obtained at $280^{\circ}C$. CZTS nanoparticles with spherical shape and grain size of 40 to 60 nm were obtained at $280^{\circ}C$. In the middle of 180 and $280^{\circ}C$, CZTS and ZnS phases were found. The time variation of reaction at $280^{\circ}C$ revealed that an amorphous state formed first instead of binary phases and then the amorphous phase was converted to crystalline CZTS state; it is different reaction path way from conventional solid-state reaction path of which binary phases react to form CZTS. CZTS films deposited and annealed from single-phase nanoparticles showed porous microstructure and poor adhesion. This indicates that a combination of CZTS and other flux phase is necessary to have a dense film for device fabrication.