DOI QR코드

DOI QR Code

Modeling and experimental production yield of 64Cu with natCu and natCu-NPs in Tehran Research Reactor

  • Karimi, Zahra (Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University) ;
  • Sadeghi, Mahdi (Medical Physics Department, School of Medicine, Iran University of Medical Science) ;
  • Ezati, Arsalan (Nuclear Science & Technology Research Institute (NSTRI), Reactor and Nuclear Safety Research School)
  • Received : 2018.07.15
  • Accepted : 2018.08.12
  • Published : 2019.02.25

Abstract

$^{64}Cu$ is a favorable radionuclide in nuclear medicine applications because of its unique characteristics such as three types of decay (electron capture, ${\beta}^-$ and ${\beta}^+$) and 12.7 h half-life. Production of $^{64}Cu$ by irradiation $^{nat}Cu$ and $^{nat}CuNPs$ in Tehran Research Reactor was investigated. The characteristics of copper nanoparticles were investigated with SEM, TEM and XRD analysis. The cross section of $^{63}Cu(n,{\gamma})^{64}Cu$ reaction was done with TALYS-1.8 code. The activity value of $^{64}Cu$ was calculated with theoretical approach and MCNPX-2.6 code. The results were compared with related experimental results which showed good adaptations between them.

Keywords

References

  1. A.H. Al Rayyes, Y. Ailouti, Production and quality control of $^{64}Cu$ from high current Ni target, World J. Nucl. Sci. Technol. 3 (2013) 72. https://doi.org/10.4236/wjnst.2013.32012
  2. http://www.nucleonica.net/wiki/index.php?title=Decay_Schemes.
  3. T.H. Bokhari, A. Mushtaq, I.U. Khan, Production of low and high specific activity $^{64}Cu$ in a reactor, J. Radioanal. Nucl. Chem. 284 (2010) 265-271. https://doi.org/10.1007/s10967-010-0519-3
  4. K.V. Vimalnath, A. Rajeswari, K.C. Jagadeesan, C. Viju, P.V. Joshi, M. Venkatesh, Studies on the production feasibility of $^{64}Cu$ by (n,p) reactions on Zn targets in Dhruva research reactor, J. Radioanal. Nucl. Chem. 294 (2012) 43-47. https://doi.org/10.1007/s10967-011-1548-2
  5. I.M. Cohen, M.S. Segovia, P.S. Bedregal, P.A. Mendoza, A.R. Aguirre, E.H. Montoya, A novel method for determination of copper in zinc destined to $^{64}Cu$ production in a nuclear reactor, J. Radioanal. Nucl. Chem. 309 (2016) 23-26. https://doi.org/10.1007/s10967-015-4678-0
  6. M. Neves, A. Kling, A. Oliveira, Radionuclides used for therapy and suggestion for new candidates, J. Radioanal. Nucl. Chem. 266 (2005) 377-384. https://doi.org/10.1007/s10967-005-0920-5
  7. A.M. Johnsen, B.J. Heidrich, C.B. Durrant, A.J. Bascom, K. Unlu, Reactor production of $^{64}Cu$ and $^{67}Cu$ using enriched zinc target material, J. Radioanal. Nucl. Chem. 305 (2015) 61-71. https://doi.org/10.1007/s10967-015-4032-6
  8. M.R. Aboudzadeh, M.E. Moassesi, M. Amiri, H. Shams, B. Alirezapour, M. Sadeghi, et al., Preparation and characterization of chitosan-capped radioactive gold nanoparticles: neutron irradiation impact on structural properties, J. Iran. Chem. Soc. 13 (2015) 339-345. https://doi.org/10.1007/s13738-015-0742-5
  9. Z. Karimi, M. Sadeghi, N. Mataji-Kojouri, $^{64}Cu$, a powerful positron emitter for immunoimaging and theranostic: production via $^{nat}ZnO\;and\;^{nat}ZnO-NPs$, Appl. Radiat. Isot. 137 (2018) 56-61. https://doi.org/10.1016/j.apradiso.2018.03.007
  10. S.F. Hosseini, M. Sadeghi, M.R. Aboudzadeh, M. Mohseni, Production and modeling of radioactive gold nanoparticles in Tehran research reactor, Appl. Radiat. Isot. 118 (2016) 361-365. https://doi.org/10.1016/j.apradiso.2016.10.004
  11. F. Soltani, A.B. Samani, M. Sadeghi, A.S. Shirvani, K. Yavari, Production of cerium-141 using ceria and nanoceria powder: a potential radioisotope for simultaneous therapeutic and diagnostic applications, J. Radioanal. Nucl. Chem. 303 (2015) 385-391. https://doi.org/10.1007/s10967-014-3335-3
  12. M.K. Bakht, M. Sadeghi, S.J. Ahmadi, S.S. Sadjadi, C. Tenreiro, Preparation of radioactive praseodymium oxide as a multifunctional agent in nuclear medicine: expanding the horizons of cancer therapy using nanosized neodymium oxide, Nucl. Med. Commun. 34 (2012) 5-12. https://doi.org/10.1097/mnm.0b013e32835aa7bd
  13. IAEA, Vienna. Manual for reactor produced radioisotopes, IAEA-Tecdoc 1340 (2003) 63.
  14. M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, et al., ENDF/B-VII.1 Nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (2011) 2887-2996. https://doi.org/10.1016/j.nds.2011.11.002
  15. A. Kara, M. Yigit, T. Korkut, E. Tel, Cross section calculations of neutron induced reactions on $^{124,126,128,134,136}Xe$, J. Fusion Energy 34 (2015) 882-886. https://doi.org/10.1007/s10894-015-9896-5
  16. M. Yigit, Theoretical study of cross sections of proton-induced reactions on cobalt, Nucl. Eng. and Tech. 50 (2018) 411-415. https://doi.org/10.1016/j.net.2018.01.008
  17. M. Sadeghi, M. Enferadi, Nuclear model calculations on the production of $^{119}Sb$ via various nuclear reactions, Ann. Nucl. Energy 38 (4) (2011) 825-834. https://doi.org/10.1016/j.anucene.2010.11.014
  18. M. Yigit, A. Kara, Simulation study of the proton-induced reaction cross sections for the production of $^{18}F\;and\;^{66-68}Ga$ radioisotopes, J. Radioanal. Nucl. Chem. 314 (2017) 2383-2392. https://doi.org/10.1007/s10967-017-5613-3
  19. S.F. Hosseini, M. Aboudzadeh, M. Sadeghi, A.A. Teymourlouy, M. Rostampour, Assessment and estimation of $^{67}Cu$ production yield via deuteron induced reactions on $^{nat}Zn\;and\;^{70}Zn$, Appl. Radiat. Isot. 127 (2017) 137-141. https://doi.org/10.1016/j.apradiso.2017.05.024
  20. M. Yigit, Investigating the (p,n) excitation functions on $^{104-106,108,110}\;Pd$ isotopes, Appl. Radiat. Isot. 130 (2017) 109-114. https://doi.org/10.1016/j.apradiso.2017.09.027
  21. M. Yigit, Analysis of cross sections of (n,t) nuclear reaction using different empirical formulae and level density models, Appl. Radiat. Isot. 139 (2018) 151-158. https://doi.org/10.1016/j.apradiso.2018.05.008
  22. A.J. Koning, S. Hilaire, S. Goriely, TALYS-1.8: a Nuclear Reaction Program. User Manual, NRG, Netherlands, 2013. http://www.talys.eu/download-talys.
  23. P. Saidi Bidokhti, M. Sadeghi, B. Fateh, M. Matloobi, G. Aslani, Nuclear data measurement of $^{186}Re$ production via various reactions, Nucl. Eng. and Tech. 42 (2010) 600-607. https://doi.org/10.5516/NET.2010.42.5.600
  24. M. Yigit, A. Kara, Model-based predictions for nuclear excitation functions of neutron-induced reactions on $^{64,\;66-68}Zn$ targets, Nucl. Eng. and Tech. 49 (2017) 996-1005. https://doi.org/10.1016/j.net.2017.03.006
  25. M. Sadeghi, P. Sarabadani, H. Karami, Synthesis of maghemite nano-particles and its application as radionuclidic adsorbant to purify $^{109}Cd$ radionuclide, J. Radioanal. Nucl. Chem. 283 (2010) 297. https://doi.org/10.1007/s10967-009-0350-x
  26. M. Sadeghi, H. Karami, P. Sarabadani, F. Bolourinovin, Separation of the no-Carrier-added $^{109}Cd$ from Ag, Cu and $^{65}Zn$ by use of a precipitation and AG1-X8 resin, J. Radioanal. Nucl. Chem. 281 (3) (2009) 619-623. https://doi.org/10.1007/s10967-009-0055-1
  27. A. Hedayat, Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using the RELAP5/3.2 code, Nucl. Eng. and Tech. 49 (2017) 953-967. https://doi.org/10.1016/j.net.2017.03.009
  28. Z. Gholamzadeh, E. Bavarnegin, M.L. Rachti, S.M. Mirvakili, M.C. Dastjerdi, et al., Modeling of neutron diffractometry facility of tehran research reactor using VITESS 3.3a and MCNPX Codes, Nucl. Eng. and Tech 50 (2018) 151-158. https://doi.org/10.1016/j.net.2017.10.004
  29. M. Weigand, C. Beinrucker, A. Couture, S. Fiebiger, M. Fonseca, et al., Cu-63(n, ${\gamma}$) cross section measured via 25 keV activation and time of flight, Phys. Rev. C 95 (2017) 015808. https://doi.org/10.1103/PhysRevC.95.015808
  30. E. Browne, J.K. Tuli, Nucl. Data Sheets 111 (2010) 1093. https://doi.org/10.1016/j.nds.2010.03.004