Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.3.123

Synthesis and Characterization of TiO2, Cu2O and Al2O3 Aerosol Nanoparticles Produced by the Multi-Spark Discharge Generator  

Efimov, Alexey (Department of Physical and Quantum Electronics, Moscow Institute of Physics and Technology)
Lizunova, Anna (Department of Physical and Quantum Electronics, Moscow Institute of Physics and Technology)
Sukharev, Valentin (Department of Physical and Quantum Electronics, Moscow Institute of Physics and Technology)
Ivanov, Victor (Department of Physical and Quantum Electronics, Moscow Institute of Physics and Technology)
Publication Information
Korean Journal of Materials Research / v.26, no.3, 2016 , pp. 123-129 More about this Journal
Abstract
The morphology, crystal structure and size of aerosol nanoparticles generated by erosion of electrodes made of different materials (titanium, copper and aluminum) in a multi-spark discharge generator were investigated. The aerosol nanoparticle synthesis was carried out in air atmosphere at a capacitor stored energy of 6 J, a repetition rate of discharge of 0.5 Hz and a gas flow velocity of 5.4 m/s. The aerosol nanoparticles were generated in the form of oxides and had various morphologies: agglomerates of primary particles of $TiO_2$ and $Al_2O_3$ or aggregates of primary particles of $Cu_2O$. The average size of the primary nanoparticles ranged between 6.3 and 7.4 nm for the three substances studied. The average size of the agglomerates and aggregates varied in a wide interval from 24.6 nm for $Cu_2O$ to 46.1 nm for $Al_2O_3$.
Keywords
nanoparticles; synthesis; aerosols; multi-spark discharge;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. E. Kruis, H. Fissan and A. Peled, J. Aerosol Sci., 29, 511 (1998).   DOI
2 D. Liu and G. Cao, Energy Environ. Sci., 3, 1218 (2010).   DOI
3 G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012).   DOI
4 F. Wang, W. B. Tan, Y. Zhang, X. Fan, M. Wang, Nano-technology, 17, R1 (2006).
5 S. K. Murthy, Int. J. Nanomedicine, 2, 129 (2007).
6 A. Kamyshny and S. Magdassi, Small, 10, 3515 (2014).   DOI
7 C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole and C. Sanchez, Adv. Mater., 23, 599 (2011).   DOI
8 Y. A. Kotov, Nanotechnol. Russ., 4, 415 (2009).   DOI
9 L. Madler, H. K. Kammler, R. Mueller and S. E. Pratsinis, J. Aerosol Sci., 33, 369 (2002).   DOI
10 D. Vollath, J. Nanopart. Res., 10, 39 (2008).   DOI
11 V. V. Osipov, Y. A. Kotov, M. G. Ivanov, O. M. Samatov, V. V. Lisenkov, V. V. Platonov, A. M. Murzakaev, A. I. Medvedev and E. I. Azarkevich, Laser Phys., 16, 116 (2006).   DOI
12 N. S. Tabrizi, M. Ullmann, V. A. Vons, U. Lafont and A. Schmidt-Ott, J. Nanoparticle Res., 11, 315 (2009).   DOI
13 B. K. Ku and A. D. Maynard, J. Aerosol Sci., 37, 452 (2006).   DOI
14 http://www.buonapart-e.eu/
15 T. V. Pfeiffer, J. Feng and A. Schmidt-Ott, Adv. Powder Technol., 25, 56 (2014).   DOI
16 B. O. Meuller, M. E. Messing, D. L. J. Engberg, A. M. Jansson, L. I. M. Johansson, S. M. Norlen, N. Tureson and K. Deppert, Aerosol Sci. Technol., 46, 1256 (2012).   DOI
17 J. H. Byeon, J. H. Park, J. Hwang, J. Aerosol Sci., 39, 888 (2008).   DOI
18 J. T. Kim and J. S. Chang, J. Electrostat., 63, 911 (2005).   DOI
19 V. A. Vons, L. C. P. M. de Smet, D. Munao, A. Evirgen, E. M. Kelder and A. Schmidt-Ott, J. Nanopart. Res., 13, 4867 (2011).   DOI
20 H. Horvath and M. Gangl, J. Aerosol Sci., 34, 1581 (2003).   DOI
21 D. Z. Pai, K. Ostrikov, S. Kumar, D. A. Lacoste, I. Levchenko and C. O. Laux, Sci. Reports, 3, 1221 (2013).   DOI
22 E. Hontanon, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl and F. E. Kruis, J. Nanopart. Res., 15, 1957 (2013).   DOI
23 A. A. Efimov, V. V. Ivanov, A. V. Bagazeev, I. V. Beketov, I. A. Volkov and S. V. Shcherbinin, Tech. Phys. Lett., 39, 1053 (2013).   DOI
24 G. A. Mesyats, Pulsed power, Springer Science & Business Media, New York, USA(2007).
25 R. S. Windeler, S. K. Friedlander and K. E. J. Lehtinen, Aerosol Sci. Technol., 27, 174 (1997).   DOI
26 R. S Windeler, K. E. J. Lehtinen and S. K. Friedlander, Aerosol Sci. Technol., 27, 191 (1997).   DOI
27 D. A. H. Hanaor and C. C. Sorrell, J. Mater. Sci., 46, 855 (2011).   DOI
28 A. O. Musa, T. Akomolafe and M. J. Carter, Sol. Energy Mater. Sol. Cells, 51, 305 (1998).   DOI
29 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Nature, 407, 496 (2000).   DOI
30 H. Zhang, X. Ren and Z. Cui, J. Cryst. Growth, 304, 206 (2007).   DOI
31 V. V. Ivanov, S. N. Paranin and V. R. Khrustov, Phys. Met. Met., 94, S98 (2002).
32 V. G. Zhigalina, A. A. Lizunova, S. N. Sulyanov, V. V. Ivanov and N. A. Kiselev, Nanotechnol. Russ., 9, 492 (2014).   DOI
33 T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter and M. Batzill, Sci. Reports, 4, 4043 (2014).
34 H. K. Kammler, L. Madler and S. E. Pratsinis, Chem. Eng. Technol., 24, 583 (2001).   DOI
35 P. R. Solanki, A. Kaushik, V. V. Agrawal and B. D. Malhotra, NPG Asia Mater., 3, 17 (2011).   DOI
36 T. Kim, H. Kang, S. Jeong, D. J. Kang, C. Lee, C. H. Lee, M. K. Seo, J. Y. Lee and B. J. Kim, ACS Appl. Mater. Interfaces, 6, 16956 (2014).   DOI
37 R. Mueller, H. K. Kammler, S. E. Pratsinis, A. Vital, G. Beaucage and P. Burtscher, Powder Technol., 140, 40 (2004).   DOI
38 X. Guo, A. Gutsche, M. Wagner, M. Seipenbusch and H. Nirschl, J. Nanopart. Res., 15, 1559 (2013).   DOI
39 S. Bau, O. Witschger, F. Gensdarmes and D. Thomas, J. Nanopart. Res., 14, 1217 (2012).   DOI
40 H. M. Ryan, High Voltage Engineering and Testing, 2nd ed., The Institution of Electrical Engineers, London, England (2001).
41 ISO 14887:2000 (E). Sample Preparation - Dispersing Procedures for Powders in Liquids.
42 W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed., Wiley-Interscience, New York, USA (1999).
43 D. R. Lide, CRC handbook of chemistry and physics : a ready reference book of chemical and physical data, 86th ed., CRC Press, Boca Raton, USA (2005).
44 M. Ullmann, S. K. Friedlander and A. Schmidt-Ott, J. Nanopart. Res., 4, 499 (2002).   DOI
45 S. K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd ed., Oxford University Press, New York, USA (2000).
46 R. N. Szente, R. J. Munz and M. G. Drouet, J. Phys. D: Appl. hys., 27, 1443 (1994).   DOI
47 K. E. J. Lehtinen and M. R. Zachariah, J. Aerosol Sci., 33, 357 (2002).   DOI
48 T. E. Itina and A. Voloshko, Appl. Phys. B, 113, 473 (2013).   DOI
49 F. L. Jones, J. Appl. Phys., 1, 60 (1950).
50 M. S. Naidu and V. Kamaraju, High Voltage Engineering, 3rd ed., Tata McGraw-Hill Education, New Delhi, India (2004).
51 F. Llewellyn-Jones, M. A., D.Phil., D. Sc. and F. Inst. P., Platinum Metals Rev., 7, 58 (1963).
52 W. Zhu and S. E. Pratsinis, ACS Symp. Ser., 662, 64 (2009).
53 H. C. Oh, J. H. Ji, J. H. Jung and S. S. Kim, Mater. Sci. Forum, 544-545, 143 (2007).
54 J. H. Byeon and Y. W. Kim, ACS Appl. Mater. Interfaces, 6, 763 (2014).   DOI
55 X. Jing, J. H. Park, T. M. Peters and P. S. Thorne, Toxicol. In Vitro, 29, 502 (2015).   DOI
56 S. Ghaemi, A. Schmidt-Ott and F. Scarano, Meas. Sci. Technol., 21, 105403 (2010).   DOI