Browse > Article
http://dx.doi.org/10.5757/ASCT.2018.27.4.75

Synthesis and Characterization of Water Soluble Fluorescent Copper Nanoparticles  

Yu, Ji Soo (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University)
Kim, Sung Hun (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University)
Man, Minh Tan (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University)
Lee, Hong Seok (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University)
Publication Information
Applied Science and Convergence Technology / v.27, no.4, 2018 , pp. 75-77 More about this Journal
Abstract
The electrostatic interaction between emerging quantum-confined nanostructures with plasmonic structures is crucial for future biological applications. Water-soluble green fluorescent copper nanoparticles (Cu-NPs) were fabricated. We demonstrate that L-ascorbic acid is considered as a key to precisely control small Cu-NPs and the capability of the surface ligands, while cetyltrimethylammonium bromide is used as a stabilizing agent controls the particle growth, and stabilizes the nanoparticles. Water-soluble green fluorescent Cu-NPs are tunable through modification of the reaction periods.
Keywords
Nanoparticles; Copper; Reducing agent; Fluorescence; Plasmonic band;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Zhang and E. Wang, Nano Today 9, 132 (2014).   DOI
2 I. Diez and R. H. A. Ras, Nanoscale 3, 1963 (2011).   DOI
3 S. Choi, R. M. Dickson, and J. Yu, Chem. Soc. Rev. 41, 1867 (2012).   DOI
4 Y. Z. Lu, W. T. Wei, and W. Chen, Chin. Sci. Bull. 57, 41 (2012).   DOI
5 Y. Z. Lu and W. Chen, Chem. Soc. Rev. 41, 3594 (2012).   DOI
6 G. Vitulli, M. Bernini, S. Bertozzi, E. Pitzalis, P. Salvadori, S. Coluccia, and G. Martra, Chem. Mater. 14, 1183 (2002).   DOI
7 G. R. Dey, Radiat. Phys. Chem. 74, 172 (2005).   DOI
8 T. Y. Chen, S. F. Chen, H. S. Sheu, and C. S. Yeh, J. Phys. Chem. B 106, 9717 (2002).   DOI
9 J. Tanori and M. P. Pileni, Langmuir 13, 639 (1997).   DOI
10 L. M. Qi, J. M. Ma, and J. L. Shen, J. Colloid Interface Sci. 186, 498 (1997).   DOI
11 N. A. Dhas, C. P. Raj, and A. Gedanken, Chem. Mater. 10, 1446 (1998).   DOI
12 R. V. Kumar, Y. Mastai, Y. Diamant, and A. Gedanken, J. Mater. Chem. 11, 1209 (2001).   DOI
13 M. Salavati-Niasari, F. Davar, and N. Mir, Polyhedron 27, 3514 (2008).   DOI
14 S. Chen and J. M. Sommers, J. Phys. Chem. B 105, 8816 (2001).   DOI
15 J. Zheng, C. Zhang, and R. M. Dickson, Phys. Rev. Lett. 93, 077402 (2004).   DOI
16 M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, J. Am. Chem. Soc. 130, 5883 (2008).   DOI
17 R. Jin, Nanoscale 2, 343 (2010).   DOI