Browse > Article
http://dx.doi.org/10.1016/j.net.2018.08.008

Modeling and experimental production yield of 64Cu with natCu and natCu-NPs in Tehran Research Reactor  

Karimi, Zahra (Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University)
Sadeghi, Mahdi (Medical Physics Department, School of Medicine, Iran University of Medical Science)
Ezati, Arsalan (Nuclear Science & Technology Research Institute (NSTRI), Reactor and Nuclear Safety Research School)
Publication Information
Nuclear Engineering and Technology / v.51, no.1, 2019 , pp. 269-274 More about this Journal
Abstract
$^{64}Cu$ is a favorable radionuclide in nuclear medicine applications because of its unique characteristics such as three types of decay (electron capture, ${\beta}^-$ and ${\beta}^+$) and 12.7 h half-life. Production of $^{64}Cu$ by irradiation $^{nat}Cu$ and $^{nat}CuNPs$ in Tehran Research Reactor was investigated. The characteristics of copper nanoparticles were investigated with SEM, TEM and XRD analysis. The cross section of $^{63}Cu(n,{\gamma})^{64}Cu$ reaction was done with TALYS-1.8 code. The activity value of $^{64}Cu$ was calculated with theoretical approach and MCNPX-2.6 code. The results were compared with related experimental results which showed good adaptations between them.
Keywords
$^{64}Cu$ radioisotope; Copper nanoparticles; Production yield; MCNPX; TALYS-1.8;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 A.H. Al Rayyes, Y. Ailouti, Production and quality control of $^{64}Cu$ from high current Ni target, World J. Nucl. Sci. Technol. 3 (2013) 72.   DOI
2 http://www.nucleonica.net/wiki/index.php?title=Decay_Schemes.
3 T.H. Bokhari, A. Mushtaq, I.U. Khan, Production of low and high specific activity $^{64}Cu$ in a reactor, J. Radioanal. Nucl. Chem. 284 (2010) 265-271.   DOI
4 K.V. Vimalnath, A. Rajeswari, K.C. Jagadeesan, C. Viju, P.V. Joshi, M. Venkatesh, Studies on the production feasibility of $^{64}Cu$ by (n,p) reactions on Zn targets in Dhruva research reactor, J. Radioanal. Nucl. Chem. 294 (2012) 43-47.   DOI
5 I.M. Cohen, M.S. Segovia, P.S. Bedregal, P.A. Mendoza, A.R. Aguirre, E.H. Montoya, A novel method for determination of copper in zinc destined to $^{64}Cu$ production in a nuclear reactor, J. Radioanal. Nucl. Chem. 309 (2016) 23-26.   DOI
6 M. Neves, A. Kling, A. Oliveira, Radionuclides used for therapy and suggestion for new candidates, J. Radioanal. Nucl. Chem. 266 (2005) 377-384.   DOI
7 A.M. Johnsen, B.J. Heidrich, C.B. Durrant, A.J. Bascom, K. Unlu, Reactor production of $^{64}Cu$ and $^{67}Cu$ using enriched zinc target material, J. Radioanal. Nucl. Chem. 305 (2015) 61-71.   DOI
8 S.F. Hosseini, M. Sadeghi, M.R. Aboudzadeh, M. Mohseni, Production and modeling of radioactive gold nanoparticles in Tehran research reactor, Appl. Radiat. Isot. 118 (2016) 361-365.   DOI
9 M.R. Aboudzadeh, M.E. Moassesi, M. Amiri, H. Shams, B. Alirezapour, M. Sadeghi, et al., Preparation and characterization of chitosan-capped radioactive gold nanoparticles: neutron irradiation impact on structural properties, J. Iran. Chem. Soc. 13 (2015) 339-345.   DOI
10 Z. Karimi, M. Sadeghi, N. Mataji-Kojouri, $^{64}Cu$, a powerful positron emitter for immunoimaging and theranostic: production via $^{nat}ZnO\;and\;^{nat}ZnO-NPs$, Appl. Radiat. Isot. 137 (2018) 56-61.   DOI
11 F. Soltani, A.B. Samani, M. Sadeghi, A.S. Shirvani, K. Yavari, Production of cerium-141 using ceria and nanoceria powder: a potential radioisotope for simultaneous therapeutic and diagnostic applications, J. Radioanal. Nucl. Chem. 303 (2015) 385-391.   DOI
12 M.K. Bakht, M. Sadeghi, S.J. Ahmadi, S.S. Sadjadi, C. Tenreiro, Preparation of radioactive praseodymium oxide as a multifunctional agent in nuclear medicine: expanding the horizons of cancer therapy using nanosized neodymium oxide, Nucl. Med. Commun. 34 (2012) 5-12.   DOI
13 M. Yigit, Theoretical study of cross sections of proton-induced reactions on cobalt, Nucl. Eng. and Tech. 50 (2018) 411-415.   DOI
14 IAEA, Vienna. Manual for reactor produced radioisotopes, IAEA-Tecdoc 1340 (2003) 63.
15 M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, et al., ENDF/B-VII.1 Nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (2011) 2887-2996.   DOI
16 A. Kara, M. Yigit, T. Korkut, E. Tel, Cross section calculations of neutron induced reactions on $^{124,126,128,134,136}Xe$, J. Fusion Energy 34 (2015) 882-886.   DOI
17 M. Yigit, Investigating the (p,n) excitation functions on $^{104-106,108,110}\;Pd$ isotopes, Appl. Radiat. Isot. 130 (2017) 109-114.   DOI
18 M. Sadeghi, M. Enferadi, Nuclear model calculations on the production of $^{119}Sb$ via various nuclear reactions, Ann. Nucl. Energy 38 (4) (2011) 825-834.   DOI
19 M. Yigit, A. Kara, Simulation study of the proton-induced reaction cross sections for the production of $^{18}F\;and\;^{66-68}Ga$ radioisotopes, J. Radioanal. Nucl. Chem. 314 (2017) 2383-2392.   DOI
20 S.F. Hosseini, M. Aboudzadeh, M. Sadeghi, A.A. Teymourlouy, M. Rostampour, Assessment and estimation of $^{67}Cu$ production yield via deuteron induced reactions on $^{nat}Zn\;and\;^{70}Zn$, Appl. Radiat. Isot. 127 (2017) 137-141.   DOI
21 M. Yigit, Analysis of cross sections of (n,t) nuclear reaction using different empirical formulae and level density models, Appl. Radiat. Isot. 139 (2018) 151-158.   DOI
22 A.J. Koning, S. Hilaire, S. Goriely, TALYS-1.8: a Nuclear Reaction Program. User Manual, NRG, Netherlands, 2013. http://www.talys.eu/download-talys.
23 Z. Gholamzadeh, E. Bavarnegin, M.L. Rachti, S.M. Mirvakili, M.C. Dastjerdi, et al., Modeling of neutron diffractometry facility of tehran research reactor using VITESS 3.3a and MCNPX Codes, Nucl. Eng. and Tech 50 (2018) 151-158.   DOI
24 P. Saidi Bidokhti, M. Sadeghi, B. Fateh, M. Matloobi, G. Aslani, Nuclear data measurement of $^{186}Re$ production via various reactions, Nucl. Eng. and Tech. 42 (2010) 600-607.   DOI
25 M. Yigit, A. Kara, Model-based predictions for nuclear excitation functions of neutron-induced reactions on $^{64,\;66-68}Zn$ targets, Nucl. Eng. and Tech. 49 (2017) 996-1005.   DOI
26 M. Sadeghi, P. Sarabadani, H. Karami, Synthesis of maghemite nano-particles and its application as radionuclidic adsorbant to purify $^{109}Cd$ radionuclide, J. Radioanal. Nucl. Chem. 283 (2010) 297.   DOI
27 M. Sadeghi, H. Karami, P. Sarabadani, F. Bolourinovin, Separation of the no-Carrier-added $^{109}Cd$ from Ag, Cu and $^{65}Zn$ by use of a precipitation and AG1-X8 resin, J. Radioanal. Nucl. Chem. 281 (3) (2009) 619-623.   DOI
28 A. Hedayat, Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using the RELAP5/3.2 code, Nucl. Eng. and Tech. 49 (2017) 953-967.   DOI
29 M. Weigand, C. Beinrucker, A. Couture, S. Fiebiger, M. Fonseca, et al., Cu-63(n, ${\gamma}$) cross section measured via 25 keV activation and time of flight, Phys. Rev. C 95 (2017) 015808.   DOI
30 E. Browne, J.K. Tuli, Nucl. Data Sheets 111 (2010) 1093.   DOI