DOI QR코드

DOI QR Code

Antimicrobial Evaluation and Characterization of Copper Nanoparticles Synthesized by the Simple Chemical Method

  • Wazir, Arshad Hussain (Carbon Materials Laboratory, Department of Chemistry, University of Science and Technology Bannu) ;
  • Khan, Qudratullah (Department of Biotechnology, University of Science and Technology Bannu) ;
  • Ahmad, Nisar (Department of Biotechnology, University of Science and Technology Bannu) ;
  • Ullah, Faizan (Department of Botany, University of Science and Technology Bannu) ;
  • Quereshi, Imdadullah (Carbon Materials Laboratory, Department of Chemistry, University of Science and Technology Bannu) ;
  • Ali, Hazrat (Department of Chemistry, University of Mianwali)
  • Received : 2021.10.06
  • Accepted : 2022.01.25
  • Published : 2022.02.27

Abstract

Copper nanoparticles (CuNPs) are considered of great importance due to their high catalytic and antimicrobial activities. This study focuses on the preparation and characterization of CuNPs, and on their antibacterial/antifungal activities. A copper salt (copper sulfate pentahydrate) as precursor, starch as stabilizing agent, and ascorbic acid as reducing agent were used to fabricate CuNPs. The resulting product was characterized via different techniques such as X-ray diffractrometry (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) to confirm its characteristic properties. Employing the Scherrer formula, the mean crystallite sizes of copper (Cu) and cuprous oxide (Cu2O) nanocrystals were found to be 29.21 and 25.33 nm, respectively, as measured from the main X-ray diffraction peaks. The functional groups present in the resulting CuNPs were confirmed by FTIR. In addition, the engineered CuNPs showed antibacterial and antifungal activity against tested pathogenic bacterial and fungal strains.

Keywords

References

  1. M. Tatariants, S. Yousef, S. Sakalauskaite, R. Daugelavicius, G. Denafas and R. Bendikiene, Waste Manage., 78, 521 (2018). https://doi.org/10.1016/j.wasman.2018.06.016
  2. N. V. Suramwar, S. R. Thakare and N. T. Khaty, Arabian J. Chem., 9, S1807 (2016). https://doi.org/10.1016/j.arabjc.2012.04.034
  3. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar and A. A. Rahuman, Mater. Lett., 71, 114 (2012). https://doi.org/10.1016/j.matlet.2011.12.055
  4. M. Rafique, A. J. Shaikh, R. Rasheed, M. B. Tahir, H. F. Bakhat, M. S. Rafique and F. Rabban, Nano, 12, 1750043 (2017). https://doi.org/10.1142/s1793292017500436
  5. A. Khan, A. Rashid, R. Younas and R. Chong, Int. Nano Lett., 6, 21 (2016). https://doi.org/10.1007/s40089-015-0163-6
  6. N. Vilar-Vidal, M. C. Blanco, M. A. Lopez-Quintela, J. Rivas and C. Serra, J. Phys. Chem. C, 114, 15924 (2010). https://doi.org/10.1021/jp911380s
  7. A. Umer, S. Naveed, N. Ramzan and M. S. Rafque, Nano, 7, 1230005 (2012). https://doi.org/10.1142/S1793292012300058
  8. T. P. Yadav, R. M. Yadav and D. P. Singh, Nanosci. Nanotechnol., 2, 22 (2012).
  9. A. Yamaguchi, I. Okada, T. Fukuoka, I. Sakurai and Y. Utsumi, Jpn. J. Appl. Phys., 55, 055502 (2016). https://doi.org/10.7567/JJAP.55.055502
  10. F. B. Effenberger, M. A. Sulca, M. T. Machini, R. A. Couto, P. K. Kiyohara, G. Machado and L. M. Rossi, J. Nanopart. Res., 16, 1 (2014).
  11. T. M. Dang, T. T. Le, E. Fribourg-Blanc and M. C. Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 015009 (2011). https://doi.org/10.1088/2043-6262/2/1/015009
  12. A. Olad, M. Alipour and R. Nosrati, Bull. Mater. Sci., 40, 1013 (2017). https://doi.org/10.1007/s12034-017-1432-y
  13. M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril and R. S. Varma, Chem. Rev., 116, 3722 (2016). https://doi.org/10.1021/acs.chemrev.5b00482
  14. C. Perez, M. Pauli and P. Bazerque, Acta Biol. Med. Exp., 15, 113 (1990).
  15. P. Martis, A. Fonseca, Z. Mekhalif and J. Delhalle, J. Nanopart. Res., 12, 439 (2010). https://doi.org/10.1007/s11051-009-9652-8
  16. M. Kouti and L. Matouri, Sci. Iran., 17, 73 (2010).
  17. M. Aslam, G. Gopakumar, T. L. Shoba, I. S. Mulla, K. Vijayamohanan, S. K. Kulkarni, J. Urban and W. Vogel, J. Colloid Interface Sci., 255, 79 (2002). https://doi.org/10.1006/jcis.2002.8558
  18. L. Feng, C. Zhang, G. Gao and D. Cui, Nanoscale Res. Lett., 7, 1 (2012). https://doi.org/10.1186/1556-276X-7-1
  19. G. Murugadoss, B. Rajamannan and U. Madhusudhanana, Chalcogenide Lett., 6, 197 (2009).
  20. Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott and D. Kim, Nanotechnology, 19, 415604 (2008). https://doi.org/10.1088/0957-4484/19/41/415604
  21. M. Salavati-Niasari and F. Davar, Mater. Lett., 63, 441 (2009). https://doi.org/10.1016/j.matlet.2008.11.023
  22. A. Umer, S. Naveed, N. Ramzan, M. S. Rafique and M. Imran, Materia (Rio de Janeiro), 19, 197 (2014). https://doi.org/10.1590/S1517-70762014000300002
  23. Y. Suresh, S. Annapurna, G. Bhikshamaiah and A. K. Singh, Int. J. Sci. Eng. Res., 5, 156 (2014).
  24. M. Raffi, S. Mehrwan, T. M. Bhatti, J. I. Akhter, A. Hameed, W. Yawar and U. H. M. Mahmood, Ann. Microbiol., 60, 75 (2010). https://doi.org/10.1007/s13213-010-0015-6
  25. P. K. Stoimenov, R. L. Klinger, G. L. Marchin and K. G. Klabunde, Langmuir, 18, 6679 (2002). https://doi.org/10.1021/la0202374
  26. S. Mahmoodi, A. Elmi and S. Hallaj-Nezhadi, J. Mol. Pharm. Org. Process Res., 6, 140 (2018).
  27. M. Bayat, M. Zargar, E. Chudinova, T. Astarkhanova and E. Pakina, Molecules, 26, 5402 (2021). https://doi.org/10.3390/molecules26175402
  28. A. F. Oussou-Azo, T. Nakama, M. Nakamura, T. Futagami and M. C. M. Vestergaard, Nanomaterials, 10, 2 (2020).