Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.2.80

Antimicrobial Evaluation and Characterization of Copper Nanoparticles Synthesized by the Simple Chemical Method  

Wazir, Arshad Hussain (Carbon Materials Laboratory, Department of Chemistry, University of Science and Technology Bannu)
Khan, Qudratullah (Department of Biotechnology, University of Science and Technology Bannu)
Ahmad, Nisar (Department of Biotechnology, University of Science and Technology Bannu)
Ullah, Faizan (Department of Botany, University of Science and Technology Bannu)
Quereshi, Imdadullah (Carbon Materials Laboratory, Department of Chemistry, University of Science and Technology Bannu)
Ali, Hazrat (Department of Chemistry, University of Mianwali)
Publication Information
Korean Journal of Materials Research / v.32, no.2, 2022 , pp. 80-84 More about this Journal
Abstract
Copper nanoparticles (CuNPs) are considered of great importance due to their high catalytic and antimicrobial activities. This study focuses on the preparation and characterization of CuNPs, and on their antibacterial/antifungal activities. A copper salt (copper sulfate pentahydrate) as precursor, starch as stabilizing agent, and ascorbic acid as reducing agent were used to fabricate CuNPs. The resulting product was characterized via different techniques such as X-ray diffractrometry (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) to confirm its characteristic properties. Employing the Scherrer formula, the mean crystallite sizes of copper (Cu) and cuprous oxide (Cu2O) nanocrystals were found to be 29.21 and 25.33 nm, respectively, as measured from the main X-ray diffraction peaks. The functional groups present in the resulting CuNPs were confirmed by FTIR. In addition, the engineered CuNPs showed antibacterial and antifungal activity against tested pathogenic bacterial and fungal strains.
Keywords
copper nanoparticles; synthesis; chemical reduction; characterization; antimicrobial activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott and D. Kim, Nanotechnology, 19, 415604 (2008).   DOI
2 M. Bayat, M. Zargar, E. Chudinova, T. Astarkhanova and E. Pakina, Molecules, 26, 5402 (2021).   DOI
3 N. V. Suramwar, S. R. Thakare and N. T. Khaty, Arabian J. Chem., 9, S1807 (2016).   DOI
4 J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar and A. A. Rahuman, Mater. Lett., 71, 114 (2012).   DOI
5 A. Khan, A. Rashid, R. Younas and R. Chong, Int. Nano Lett., 6, 21 (2016).   DOI
6 N. Vilar-Vidal, M. C. Blanco, M. A. Lopez-Quintela, J. Rivas and C. Serra, J. Phys. Chem. C, 114, 15924 (2010).   DOI
7 T. P. Yadav, R. M. Yadav and D. P. Singh, Nanosci. Nanotechnol., 2, 22 (2012).
8 A. Yamaguchi, I. Okada, T. Fukuoka, I. Sakurai and Y. Utsumi, Jpn. J. Appl. Phys., 55, 055502 (2016).   DOI
9 Y. Suresh, S. Annapurna, G. Bhikshamaiah and A. K. Singh, Int. J. Sci. Eng. Res., 5, 156 (2014).
10 T. M. Dang, T. T. Le, E. Fribourg-Blanc and M. C. Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 015009 (2011).   DOI
11 M. Raffi, S. Mehrwan, T. M. Bhatti, J. I. Akhter, A. Hameed, W. Yawar and U. H. M. Mahmood, Ann. Microbiol., 60, 75 (2010).   DOI
12 S. Mahmoodi, A. Elmi and S. Hallaj-Nezhadi, J. Mol. Pharm. Org. Process Res., 6, 140 (2018).
13 A. Olad, M. Alipour and R. Nosrati, Bull. Mater. Sci., 40, 1013 (2017).   DOI
14 C. Perez, M. Pauli and P. Bazerque, Acta Biol. Med. Exp., 15, 113 (1990).
15 P. Martis, A. Fonseca, Z. Mekhalif and J. Delhalle, J. Nanopart. Res., 12, 439 (2010).   DOI
16 M. Aslam, G. Gopakumar, T. L. Shoba, I. S. Mulla, K. Vijayamohanan, S. K. Kulkarni, J. Urban and W. Vogel, J. Colloid Interface Sci., 255, 79 (2002).   DOI
17 L. Feng, C. Zhang, G. Gao and D. Cui, Nanoscale Res. Lett., 7, 1 (2012).   DOI
18 M. Salavati-Niasari and F. Davar, Mater. Lett., 63, 441 (2009).   DOI
19 G. Murugadoss, B. Rajamannan and U. Madhusudhanana, Chalcogenide Lett., 6, 197 (2009).
20 M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril and R. S. Varma, Chem. Rev., 116, 3722 (2016).   DOI
21 A. Umer, S. Naveed, N. Ramzan, M. S. Rafique and M. Imran, Materia (Rio de Janeiro), 19, 197 (2014).   DOI
22 P. K. Stoimenov, R. L. Klinger, G. L. Marchin and K. G. Klabunde, Langmuir, 18, 6679 (2002).   DOI
23 A. F. Oussou-Azo, T. Nakama, M. Nakamura, T. Futagami and M. C. M. Vestergaard, Nanomaterials, 10, 2 (2020).
24 F. B. Effenberger, M. A. Sulca, M. T. Machini, R. A. Couto, P. K. Kiyohara, G. Machado and L. M. Rossi, J. Nanopart. Res., 16, 1 (2014).
25 M. Tatariants, S. Yousef, S. Sakalauskaite, R. Daugelavicius, G. Denafas and R. Bendikiene, Waste Manage., 78, 521 (2018).   DOI
26 M. Rafique, A. J. Shaikh, R. Rasheed, M. B. Tahir, H. F. Bakhat, M. S. Rafique and F. Rabban, Nano, 12, 1750043 (2017).   DOI
27 A. Umer, S. Naveed, N. Ramzan and M. S. Rafque, Nano, 7, 1230005 (2012).   DOI
28 M. Kouti and L. Matouri, Sci. Iran., 17, 73 (2010).