• Title/Summary/Keyword: Cu Electrodeposition

Search Result 120, Processing Time 0.028 seconds

Electrochemical Metallization Processes for Copper and Silver Metal Interconnection (구리 및 은 금속 배선을 위한 전기화학적 공정)

  • Kwon, Oh Joong;Cho, Sung Ki;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • The Cu thin film material and process, which have been already used for metallization of CMOS(Complementary Metal Oxide Semiconductor), has been highlighted as the Cu metallization is introduced to the metallization process for giga - level memory devices. The recent progresses in the development of key elements in electrochemical processes like surface pretreatment or electrolyte composition are summarized in the paper, because the semiconductor metallization by electrochemical processes such as electrodeposition and electroless deposition controls the thickness of Cu film in a few nm scales. The technologies in electrodeposition and electroless deposition are described in the viewpoint of process compatibility between copper electrodeposition and damascene process, because a Cu metal line is fabricated from the Cu thin film. Silver metallization, which may be expected to be the next generation metallization material due to its lowest resistivity, is also introduced with its electrochemical fabrication methods.

Electrodeposition of Cu2Se Semiconductor Thin Film on Se-Modified Polycrystalline Au Electrode

  • Lee, Wooju;Myung, Noseung;Rajeshwar, Krishnan;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.140-145
    • /
    • 2013
  • This study describes the electrodeposition of $Cu_2Se$ thin films with a two-step approach that is based on the initial modification of polycrystalline Au electrode with a selenium overlayer followed by a cathodic stripping of the layer as $Se^{2-}$ in a 1 M lactic acid electrolyte containing $Cu^{2+}$ ions. For this two-step approach to be effective, the $Cu^{2+}$ reduction potential should be shifted to more negative potentials passed potentials for the reduction of Se to $Se^{2-}$. This was accomplished by the complexation of $Cu^{2+}$ ions with lactic acid. The resultant $Cu_2Se$ films were characterized by linear sweep voltammetry combined with electrochemical quartz crystal microgravimetry, UV-vis absorption spectrometry and Raman spectroscopy. Photoelectrochemical experiments revealed that $Cu_2Se$ synthesized thus, behaved as a p-type semiconductor.

Electrodeposition of Conducting Polymers on Copper in Nonaqueous Media by Corrosion Inhibition

  • Lee, Seonha;Lee, Hochun
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • This study demonstrates the direct anodic electrodeposition of polypyrrole (PPy), poly(3,4-ethyl-enedioxythiophene) (PEDOT), and polythiophene (PTh) on Cu electrodes by employing a corrosion inhibitor, succinonitrile (SN). SN was found to suppress anodic Cu dissolution beyond the oxidation potential of the polymer monomers. It is also revealed that the Cu surface passivated by SN is still adequately conductive to allow the redox reaction of 1,4-difluoro-2,5-dimethoxybenzene (FMB) and the oxidation of the polymer monomers. Through both cyclic voltammetry and galvanostatic techniques, PPy, PEDOT, and PTh films were successfully synthesized on Cu electrodes in the presence of SN, and the redox behaviors of the films were evaluated.

TSV Filling Technology using Cu Electrodeposition (Cu 전해도금을 이용한 TSV 충전 기술)

  • Kee, Se-Ho;Shin, Ji-Oh;Jung, Il-Ho;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2014
  • TSV(through silicon via) filling technology is making a hole in Si wafer and electrically connecting technique between front and back of Si die by filling with conductive metal. This technology allows that a three-dimensionally connected Si die can make without a large number of wire-bonding. These TSV technologies require various engineering skills such as forming a via hole, forming a functional thin film, filling a conductive metal, polishing a wafer, chip stacking and TSV reliability analysis. This paper addresses the TSV filling using Cu electrodeposition. The impact of plating conditions with additives and current density on electrodeposition will be considered. There are additives such as accelerator, inhibitor, leveler, etc. suitably controlling the amount of the additive is important. Also, in order to fill conductive material in whole TSV hole, current wave forms such as PR(pulse reverse), PPR(periodic pulse reverse) are used. This study about semiconductor packaging will be able to contribute to the commercialization of 3D TSV technology.

Formation of Hollow Cu Through-Vias for MEMS Packages (MEMS 패키지용 Hollow Cu 관통비아의 형성공정)

  • Choi, J.Y.;Kim, M.Y.;Moon, J.T.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.49-53
    • /
    • 2009
  • In order to investigate the formation behavior of hollow Cu via for MEMS packaging, we observed the microstructure of the Cu vias and measured the average thickness and the thickness deviation with variations of pulse-reverse pulse current density and electrodeposition time. With electrodeposition for 3 hours at the pulse and reverse pulse current densities of $-5\;mA/cm^2$ and $15\;mA/cm^2$, the average thickness and the thickness deviation of the Cu vias were $5\;{\mu}m$ and $0.63\;{\mu}m$, respectively. With increasing the electrodeposition time to 6 hours, it was possible to form the Cu vias, of which the average thickness and thickness variation of the Cu vias were $10\;{\mu}m$ and $1\;{\mu}m$, respectively. With increasing the pulse and reverse pulse current densities to $-10\;mA/cm^2$ and $30\;mA/cm^2$, Cu vias of uniform thickness could not be formed due to the faster increase of the thickness deviation than that of the average thickness with increasing the electrodeposition time.

  • PDF

Effect of Electrodeposition Condition on GMR Co/Cu Multilayers

  • Rheem, Young-Woo;Yoo, Bong-Young
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.124-128
    • /
    • 2007
  • Co/Cu GMR multilayers were electrodeposited from various electrolytes using the dual bath technique to achieve high sensitive GMR multilayers. GMR ratio and sensitivity were strongly influenced by solution compositions and electrodeposition parameters where GMR and sensitivity of 12% and 0.052%/Oe were achieved from pyrophosphate baths. The effect of plating conditions on properties of Co/Cu multilayers may be attributed to crystallinity and grain size of deposits, and the ability of plating solutions to deposit contiguous films at lower nano thicknesses.

Through-Silicon-Via Filling Process Using Cu Electrodeposition (구리 전해 도금을 이용한 실리콘 관통 비아 채움 공정)

  • Kim, Hoe Chul;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.723-733
    • /
    • 2016
  • Intensive researches have been focused on the 3-dimensional packaging technology using through silicon via (TSV) to overcome the limitation in Cu interconnection scaling. Void-free filling of TSV by the Cu electrodeposition is required for the fabrication of reliable electronic devices. It is generally known that sufficient inhibition on the top and the sidewall of TSV, accompanying the selective Cu deposition on the bottom, enables the void-free bottom-up filling. Organic additives contained in the electrolyte locally determine the deposition rate of Cu inside the TSV. Investigation on the additive chemistry is essential for understanding the filling mechanisms of TSV based on the effects of additives in the Cu electrodeposition process. In this review, we introduce various filling mechanisms suggested by analyzing the additives effect, research on the three-additive system containing new levelers synthesized to increase efficiency of the filling process, and methods to improve the filling performance by modifying the functional groups of the additives or deposition mode.

The Effect of Sulfurization Temperature on CuIn(Se,S)2 Solar Cells Synthesized by Electrodeposition

  • Kim, Dong-Uk;Yun, Sang-Hwa;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.97-97
    • /
    • 2014
  • The properties of thin film solar cells based on electrodeposited $CuIn(Se,S)_2$ were investigated. The proposed solar cell fabrication method involves a single-step $CuInSe_2$ thin film electrodeposition followed by sulfurization in a tube furnace to form a $CuIn(Se,S)_2$ quaternary phase. A sulfurization temperature of $450-550^{\circ}C$ significantly affected the performance of the $CuIn(Se,S)_2$ thin film solar cell in addition to its composition, grain size and bandgap. Sulfur(S) substituted for selenium(Se) at increasing rates with higher sulfurization temperature, which resulted in an increase in overall band gap of the $CuIn(Se,S)_2$ thin film. The highest conversion efficiency of 3.12% under airmass(AM) 1.5 illumination was obtained from the $500^{\circ}C$-sulfurized solar cell. The highest External Quantum Efficiency(EQE) was also observed at the sulfurization temperature of $500^{\circ}C$.

  • PDF

Cu Filling Characteristics of Trench Vias with Variations of Electrodeposition Parameters (Electrodeposition 변수에 따른 Trench Via의 Cu Filling 특성)

  • Lee, Kwang-Yong;Oh, Teck-Su;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.57-63
    • /
    • 2006
  • For chip-stack package applications, Cu filling characteristics into trench vias of $75{\sim}10\;{\mu}m$ width and 3 mm length were investigated with variations of electroplating current density and current mode. At $1.25mA/cm^{2}$ of DC mode, Cu filling ratio higher than 95% was obtained for trench vias of $75{\sim}35{\mu}m$ width. When electroplated at DC $2.5mA/cm^{2}$, Cu filling ratios became inferior to those processed at DC $1.25mA/cm^{2}$. Pulse current mode exhibited Cu filling characteristics superior to DC current mode.

  • PDF

Influence of Process Conditions on Properties of Cu2O Thin Films Grown by Electrodeposition (전착법을 이용한 Cu2O 박막 형성 및 공정 조건에 따른 특성 변화)

  • Cho, Jae Yu;Ha, Jun Seok;Ryu, Sang-Wan;Heo, Jaeyeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • Cuprous oxide ($Cu_2O$) is one of the potential candidates as an absorber layer in ultra-low-cost solar cells. $Cu_2O$ is highly desirable semiconducting oxide material for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and high absorption coefficient that absorbs visible light of wavelength up to 650 nm. In addition, $Cu_2O$ has other several advantages such as non-toxicity, low cost and also can be prepared with simple and cheap methods on large scale. In this work, we deposited the $Cu_2O$ thin films by electrodeposition on gold coated $SiO_2/Si$ wafers. We changed the process conditions such as pH of the solution, applied potential on working electrode, and solution temperature. Finally, we confirmed the structural properties of the thin films by XRD and SEM.