Browse > Article
http://dx.doi.org/10.6117/kmeps.2017.24.2.037

Influence of Process Conditions on Properties of Cu2O Thin Films Grown by Electrodeposition  

Cho, Jae Yu (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University)
Ha, Jun Seok (Department of Advanced Chemicals and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University)
Ryu, Sang-Wan (Department of Physics, and Optoelectronics Convergence Research Center, Chonnam National University)
Heo, Jaeyeong (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.24, no.2, 2017 , pp. 37-41 More about this Journal
Abstract
Cuprous oxide ($Cu_2O$) is one of the potential candidates as an absorber layer in ultra-low-cost solar cells. $Cu_2O$ is highly desirable semiconducting oxide material for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and high absorption coefficient that absorbs visible light of wavelength up to 650 nm. In addition, $Cu_2O$ has other several advantages such as non-toxicity, low cost and also can be prepared with simple and cheap methods on large scale. In this work, we deposited the $Cu_2O$ thin films by electrodeposition on gold coated $SiO_2/Si$ wafers. We changed the process conditions such as pH of the solution, applied potential on working electrode, and solution temperature. Finally, we confirmed the structural properties of the thin films by XRD and SEM.
Keywords
$Cu_2O$; Cuprous oxide; Electrodeposition; Solar cell; Absorber layer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. H. Lee, B. M. Park, K. H. Kim, Y. C. Chang, J. Pyee, and H. J. Chang, "Effects of Passivation Thin Films by Spray Coatings on Properties of Flexible CIGS Solar Cells", J. Microelectron. Packag. Soc., 23(3), 57 (2016).   DOI
2 Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, "Development of $CuInSe_2$ Nanocrystal and Nanoring Inks for Low-cost Solar Cells", Nano Lett., 8, 2982 (2008).   DOI
3 C. Wadia, A. P. Alivisatos, and D. M. Kammen, "Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment", Environ. Sci. Technol., 43, 2072 (2009).   DOI
4 B. G. Mendis, M. C. J. Goodman, J. D. Major, A. A. Taylor, K. Durose, and D. P. Halliday, "The Role of Secondary Phase Precipitation on Grain Boundary Electrical Activity in $Cu_2Zn-SnS_4$ (CZTS) Photovoltaic Absorber Layer Material", J. Appl. Phys., 112, 124508 (2012).   DOI
5 M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, and Q. Qiao, "Strategic Review of Secondary Phases, Defects and Defect-complexes in Kesterite CZTS-Se Solar Cells", Energy Environ. Sci., 8, 3134 (2015).   DOI
6 A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, "Heterojunction Solar Cell with 2% Efficiency Based on a $Cu_2O$ Substrate", Appl. Phys. Lett., 88, 163502 (2006).   DOI
7 T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, "High-efficiency Oxide Solar Cells with ZnO/$Cu_2O$ Heterojunction Fabricated on Thermally Oxidized $Cu_2O$ Sheets", Appl. Phys. Express, 4, 062301 (2011).   DOI
8 Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, and T. Buonassisi, "Ultrathin Amorphous Zinc-tin-oxide Buffer Layer for Enhancing Heterojunction Interface Quality in Metal-oxide Solar Cells", Energy Environ. Sci., 6, 2112 (2013).   DOI
9 S. W. Lee, Y. S. Lee, J. Heo, S. C. Siah, D. Chua, R. E. Brandt, S. B. Kim, J. P. Mailoa, T. Buonassisi, and R. G. Gordon, "Improved $Cu_2O$-based Solar Cells Using Atomic Layer Deposition to Control the Cu Oxidation State at the p-n Junction", Adv. Energy Mater., 4(11), 1301916 (2014).   DOI
10 J. Kaur, O.Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, "All-Oxide Solar Cells Based on Electrodeposited $Cu_2O$ Absorber and Atomic Layer Deposited ZnMgO on Precious-metal-free Electrode", Sol. Energy Mater. Sol. Cells, 161, 449 (2017).   DOI
11 Y. Ievskaya, R. L. Z. Hoye, A. Sadhanala, K. P. Musselman, and J. L. MacManus-Driscoll, "Fabrication of ZnO/$Cu_2O$ Heterojunctions in Atmospheric Conditions: Improved Interface Quality and Solar Cell Performance", Sol. Energy Mater. Sol. Cells, 135, 43 (2015).   DOI
12 T. Minami, Y. Nishi, and T. Miyata, "Efficiency Enhancement Using a $Zn_{1-x}Ge_xO$ Thin Film as an n-type Window Layer in $Cu_2O$-based Heterojunction Solar Cells", Appl. Phys. Express, 9, 52301 (2016).   DOI
13 S. Y. Park, and J. H. Lee, "Electrodeposition of Nano $TiO_2$ Powder Dispersed Nickel Composite Coating", J. Microelectron. Packag. Soc., 19(4), 65 (2012).   DOI
14 S. Noda, H. Shima, and H. Akinaga, "$Cu_2O$/ZnO Heterojunction Solar Cells Fabricated by Magnetron-Sputter Deposition Method Films Using Sintered Ceramics Targets", J. Phys. Conf. Ser., 433, 12027 (2013).   DOI
15 S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, "Electrodeposited ZnO/$Cu_2O$ Heterojunction Solar Cells", Electrochim. Acta, 53, 2226 (2008).   DOI
16 P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, "$Cu_2O$: Electrodeposition and Characterization", Chem. Mater., 11, 3512 (1999).   DOI
17 A. El-Shaer, and A. R. Abdelwahed, "Potentiostatic Deposition and Characterization of Cuprous Oxide Thin Films", ISRN Nanotechnology, 2013, 271545 (2013).
18 Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon and T. Buonassisi, "Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open-Circuit Voltage in Cuprous Oxide Solar Cells", Adv. Mater., 26, 4704 (2014).   DOI
19 L. C. Wang, N. R. de Tacconi, C. R. Chenthamarakshan, K. Rajeshwar and M. Tao, "Electrodeposited Copper Oxide Films: Effect of Bath pH on Grain Orientation and Orientation-dependent Interfacial Behavior", Thin Solid Films, 515, 3090 (2007).   DOI
20 S. Bijani, L. Martinez, M. Gabas, E. A. Dalchiele and J.-R. Ramos-Barrado, "Low-Temperature Electrodeposition of $Cu_2O$ Thin Films: Modulation of Micro-Nanostructure by Modifying the Applied Potential and Electrolytic Bath pH", J. Phys. Chem. C., 113, 19482 (2009).   DOI
21 M. J. Siegfried and K. S. Choi, "Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution", Adv. Mater., 16(19), 1743 (2004).   DOI
22 J. Katayama, K. Ito, M. Matsuoka and J. Tamaki, "Performance of $Cu_2O$/ZnO Solar Cell Prepared by Two-step Electrodeposition", J. Appl. Electrochem., 34, 687 (2004).   DOI