DOI QR코드

DOI QR Code

Electrodeposition of Conducting Polymers on Copper in Nonaqueous Media by Corrosion Inhibition

  • Lee, Seonha (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Lee, Hochun (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2012.05.20
  • Accepted : 2012.06.17
  • Published : 2012.06.30

Abstract

This study demonstrates the direct anodic electrodeposition of polypyrrole (PPy), poly(3,4-ethyl-enedioxythiophene) (PEDOT), and polythiophene (PTh) on Cu electrodes by employing a corrosion inhibitor, succinonitrile (SN). SN was found to suppress anodic Cu dissolution beyond the oxidation potential of the polymer monomers. It is also revealed that the Cu surface passivated by SN is still adequately conductive to allow the redox reaction of 1,4-difluoro-2,5-dimethoxybenzene (FMB) and the oxidation of the polymer monomers. Through both cyclic voltammetry and galvanostatic techniques, PPy, PEDOT, and PTh films were successfully synthesized on Cu electrodes in the presence of SN, and the redox behaviors of the films were evaluated.

Keywords

References

  1. M. Angelopoulos, IBM J. Res. & Dev., 45, 57 (2001). https://doi.org/10.1147/rd.451.0057
  2. M. Helgesen, R. Sondergaard and F.C. Krebs, J. Mater. Chem., 20, 36 (2010). https://doi.org/10.1039/b913168j
  3. A. Facchetti, Chem. Mater., 23, 733 (2011). https://doi.org/10.1021/cm102419z
  4. G. Li, R. Zhu and Y. Yang, Nature. Photon., 6, 153 (2012). https://doi.org/10.1038/nphoton.2012.11
  5. P. Novak, O. Haas, K. S. V. Santhanam and K. Mueller, Chem. Rev., 97, 207 (1997). https://doi.org/10.1021/cr941181o
  6. T. Osaka, K. Naoi, H. Sakai and S. Ogano, J. Electrochem. Soc., 134, 285 (1987). https://doi.org/10.1149/1.2100447
  7. J. M. Ko, H. W. Rhee, S.-M. Park and C. Y. Kim, J. Electrochem. Soc., 137, 905 (1990). https://doi.org/10.1149/1.2086576
  8. K. Kanamura, Y. Kawai, S. Yonezawa and Z. Takehara, J. Phys. Chem. 98, 2174 (1994). https://doi.org/10.1021/j100059a034
  9. D.J. Walton, S. Ryley, I.V.F. Viney and E. Taylor, Adv. Mater. Opt. Electron., 6, 395 (1996). https://doi.org/10.1002/(SICI)1099-0712(199609)6:5/6<395::AID-AMO291>3.0.CO;2-O
  10. S. Biallozor and A. Kupniewska, Synth. Met., 155, 443 (2005). https://doi.org/10.1016/j.synthmet.2005.09.002
  11. F. Beck, R. Michaelis, F. Schloten and B. Zinger, Electrochim. Acta, 39, 229 (1994). https://doi.org/10.1016/0013-4686(94)80058-8
  12. K. Naoi*, M. Takeda, H. Kanno, M. Sakakura and A. Shimada, Electrochim. Acta, 45, 3413 (2000). https://doi.org/10.1016/S0013-4686(00)00423-0
  13. K. G. Conroy and C. B. Breslin, Electrochim. Acta, 48, 721 (2003). https://doi.org/10.1016/S0013-4686(02)00741-7
  14. L. M. Martins dos Santos, J. C. Lacroixb, K. I. Chane- Ching, A. Adenier, L. M. Abrantes and P.C. Lacaze, J. Electroanal. Chem., 587, 67 (2006). https://doi.org/10.1016/j.jelechem.2005.10.015
  15. P. Herrasti, A. I. del Rio and J. Recio, Electrochim. Acta, 52, 6496 (2007). https://doi.org/10.1016/j.electacta.2007.04.074
  16. M. Sharifirad, A. Omrani, A. A. Rostami and M. Khoshroo, J. Electroanal. Chem., 645, 149 (2010). https://doi.org/10.1016/j.jelechem.2010.05.005
  17. D. E. Tallman, C. Vang, G. G. Wallace and G. P. Bierwagen, J. Electrochem. Soc., 149, C173 (2002). https://doi.org/10.1149/1.1448820
  18. D. E. Tallman, M. P. Dewald, C. K. Vang, G. G. Wallace, G. P. Bierwagen, Appl. Phys., 4, 137 (2004).
  19. K. Abe, Y. Ushigoe, H. Yoshitake and M. Yoshio, J. Power Sources, 153, 328 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.067