DOI QR코드

DOI QR Code

Through-Silicon-Via Filling Process Using Cu Electrodeposition

구리 전해 도금을 이용한 실리콘 관통 비아 채움 공정

  • Kim, Hoe Chul (School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University) ;
  • Kim, Jae Jeong (School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University)
  • 김회철 (서울대학교 화학생물공학부) ;
  • 김재정 (서울대학교 화학생물공학부)
  • Received : 2016.08.31
  • Accepted : 2016.09.22
  • Published : 2016.12.01

Abstract

Intensive researches have been focused on the 3-dimensional packaging technology using through silicon via (TSV) to overcome the limitation in Cu interconnection scaling. Void-free filling of TSV by the Cu electrodeposition is required for the fabrication of reliable electronic devices. It is generally known that sufficient inhibition on the top and the sidewall of TSV, accompanying the selective Cu deposition on the bottom, enables the void-free bottom-up filling. Organic additives contained in the electrolyte locally determine the deposition rate of Cu inside the TSV. Investigation on the additive chemistry is essential for understanding the filling mechanisms of TSV based on the effects of additives in the Cu electrodeposition process. In this review, we introduce various filling mechanisms suggested by analyzing the additives effect, research on the three-additive system containing new levelers synthesized to increase efficiency of the filling process, and methods to improve the filling performance by modifying the functional groups of the additives or deposition mode.

반도체 배선 미세화에 의한 한계를 극복하기 위해 실리콘 관통 비아(through silicon via, TSV)를 사용한 소자의 3차원 적층에 대한 연구가 진행되고 있다. TSV 내부는 전해도금을 통해 구리로 채우며, 소자의 신뢰성을 확보하기 위해 결함 없는 TSV의 채움이 요구된다. TSV 입구와 벽면에서는 구리 전착을 억제하고, TSV 바닥에서 선택적으로 구리 전착을 유도하는 바닥 차오름을 통해 무결함 채움이 가능하다. 전해 도금액에 포함되는 유기 첨가제는 TSV 위치에 따라 국부적으로 구리 전착 속도를 결정하여 무결함 채움을 가능하게 한다. TSV의 채움 메커니즘은 첨가제의 거동에 기반하여 규명되므로 첨가제의 특성을 이해하는 연구가 선행되어야 한다. 본 총설에서는 첨가제의 작용기작을 바탕으로 하는 다양한 채움 메커니즘, TSV 채움 효율을 개선하기 위한 평탄제의 개발과 3-첨가제 시스템에서의 연구, 첨가제 작용기와 도금 방법의 수정을 통한 채움 특성의 향상에 관한 연구를 소개한다.

Keywords

References

  1. Ryan, J. G., Geffken, R. M., Poulin, N. R. and Paraszczak, J. R., "The Evolution of Interconnection Technology at IBM," IBM J. Res. Dev., 39, 371-381(1995). https://doi.org/10.1147/rd.394.0371
  2. Interconnect, ITRS (International Technology Roadmap for Semiconductors, on-line document), 2015 edition, International Technology Roadmap for Semiconductors(2015).
  3. Yoshinaga, T. and Nomura, M., "Trends in R&D in TSV Technology for 3D LSI Packaging," Sci. Technol. Trends, 37, 26-39 (2010).
  4. Lee, C. H., Hwang, S., Kim, S.-C. and Kim, J. J., "Cu Electroless Deposition onto Ta Substrates Application to Create a Seed Layer for Cu Electrodeposition," Electrochem. Solid-State Lett., 9, C157-C160(2006). https://doi.org/10.1149/1.2225726
  5. Inoue, F., Shimizu, T., Yokoyama, T., Miyake, H., Kondo, K., Saito, T., Hayashi, T., Tanaka, S., Terui, T. and Shingubara, S., "Formation of Electroless Barrier and Seed Layers in a High Aspect Ratio Through-Si Vias Using Au Nanoparticle Catalyst for All-Wet Cu Filling Technology," Electrochim. Acta, 56, 6245-6250(2011). https://doi.org/10.1016/j.electacta.2011.02.078
  6. Lim, T., Koo, H.-C., Kim, K. H., Park, K. J., Kim, M. J., Kwon, O. J. and Kim, J. J., "Room-Temperature Electroless Deposition of CoB Film and its Application as In Situ Capping during Buffing Process," Electrochem. Solid-State Lett., 14, D95-D98(2011). https://doi.org/10.1149/1.3600759
  7. Kim, K. H., Lim, T., Kim, M. J., Choe, S., Park, K. J., Ahn, S. H., Kwon, O. J. and Kim, J. J., "Direct Cu Electrodeposition on Electroless Deposited NiWP Barrier Layer on SiO2 Substrate for All-Wet Metallization Process," J. Electrochem. Soc., 161, D756-D760(2014). https://doi.org/10.1149/2.0291414jes
  8. Park, K. J., Kim, M. J., Lim, T., Koo, H.-C. and Kim, J. J., "Conformal Cu Seed Layer Formation by Electroless Deposition in Non-Bosch through Silicon Vias," Electrochem. Solid-State Lett., 15, D26-D28(2012). https://doi.org/10.1149/2.009206esl
  9. Bernasconi, R., Molazemhosseini, A., Cervati, M., Armini, S. and Magagnin, L., "Application of Self-Assembled Monolayers to the Electroless Metallization of High Aspect Ratio Vias for Microelectronics," J. Electron. Mater., 1-7(2016).
  10. Kim, M. J. and Kim, J. J., "Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices," Korean Chem. Eng. Res., 52(1), 26-39(2014). https://doi.org/10.9713/kcer.2014.52.1.26
  11. Cho, S. K., Kim, M. J. and Kim, J. J., "MSA as a Supporting Electrolyte in Copper Electroplating for Filling of Damascene Trenches and Through Silicon Vias," Electrochem. Solid-State Lett., 14, D52-D56(2011). https://doi.org/10.1149/1.3557758
  12. Zhu, Y., Ma, S., Sun, X., Chen, J., Miao, M. and Jin, Y., "Numerical Modeling and Experimental Verification of Through Silicon Via (TSV) Filling in Presence of Additives," Microelectron. Eng., 117, 8-12(2014). https://doi.org/10.1016/j.mee.2013.12.002
  13. Kong, L., Lloyd, J., Yeap, K., Zschech, E., Rudack, A., Liehr, M. and Diebold, A., "Applying X-ray Microscopy and Finite Element Modeling to Identify the Mechanism of Stress-Assisted Void Growth in Through-Silicon Vias," J. Appl. Phys., 110, 053502(2011). https://doi.org/10.1063/1.3629988
  14. Nguyen, A., Fealey, K., Reilly, P., Pattanaik, G., Gracias, A., Wafula, F., Flynn, M. and Enloe, J., "Impact of Bath Stability on Electroplated Cu for TSVs in a Controlled Environment," J. Microelectron. Electron. Pack., 12, 43-48(2015). https://doi.org/10.4071/imaps.448
  15. Kim, S.-K. and Kim, J. J., "Superfilling Evolution in Cu Electrodeposition : Dependence on the Aging Time of the Accelerator," Electrochem. Solid-State Lett., 7, C98-C100(2004). https://doi.org/10.1149/1.1777552
  16. Cho, S. K., Kim, S.-K. and Kim, J. J., "Superconformal Cu Electrodeposition Using DPS; A Substitutive Accelerator for Bis(3-sulfopropyl) Disulfide," J. Electrochem. Soc., 152, C330-C333(2005). https://doi.org/10.1149/1.1891645
  17. Choe, S., Kim, M. J., Kim, H. C., Cho, S. K., Ahn, S. H., Kim, S.-K. and Kim, J. J., "Degradation of Bis(3-sulfopropyl) Disulfide and Its Influence on Copper Electrodeposition for Feature Filling," J. Electrochem. Soc., 160, D3179-D3185(2013). https://doi.org/10.1149/2.032312jes
  18. Kim, J. J., Kim, S.-K. and Kim, Y. S., "Catalytic Behavior of 3- Mercapto-1-propane Sulfonic Acid on Cu Electrodeposition and Its Effect on Cu Film Properties for CMOS Device Metallization," J. Electroanal. Chem., 542, 61-66(2003). https://doi.org/10.1016/S0022-0728(02)01450-X
  19. Cho, S. K., Kim, H. C., Kim, M. J. and Kim, J. J., "Voltammetric Observation of Transient Catalytic Behavior of SPS in Copper Electrodeposition-Its Interaction with Cuprous Ion from Comproportionation," J. Electrochem. Soc., 163, D428-D433(2016). https://doi.org/10.1149/2.1101608jes
  20. Gallaway, J. W. and West, A. C., "PEG, PPG, and Their Triblock Copolymers as Suppressors in Copper Electroplating," J. Electrochem. Soc., 155, D632-D639(2008). https://doi.org/10.1149/1.2958309
  21. Gallaway, J. W., Willey, M. J. and West, A. C., "Acceleration Kinetics of PEG, PPG, and a Triblock Copolymer by SPS During Copper Electroplating," J. Electrochem. Soc., 156, D146-D154(2009). https://doi.org/10.1149/1.3078405
  22. Gallaway, J. W., Willey, M. J. and West, A. C., "Copper Filling of 100 nm Trenches Using PEG, PPG, and a Triblock Copolymer as Plating Suppressors," J. Electrochem. Soc., 156, D287-D295(2009). https://doi.org/10.1149/1.3142422
  23. Cao, Y., Taephaisitphongse, P., Chalupa, R. and West, A. C., "Three-Additive Model of Superfilling of Copper," J. Electrochem. Soc., 148, C466-C472(2001). https://doi.org/10.1149/1.1377898
  24. Kim, S.-K., Josell, D. and Moffat, T., "Electrodeposition of Cu in the PEI-PEG-Cl-SPS Additive System : Reduction of Overfill Bump Formation During Superfilling," J. Electrochem. Soc., 153, C616-C622(2006). https://doi.org/10.1149/1.2216356
  25. Moffat, T. P., Wheeler, D., Edelstein, M. D. and Josell, D., "Superconformal Film Growth: Mechanism and Quantification," IBM J. Res. Dev., 49, 19-36(2005). https://doi.org/10.1147/rd.491.0019
  26. Moffat, T., Wheeler, D., Kim, S.-K. and Josell, D., "Curvature Enhanced Adsorbate Coverage Model for Electrodeposition," J. Electrochem. Soc., 153, C127-C132(2006). https://doi.org/10.1149/1.2165580
  27. Moffat, T. P. and Josell, D., "Superconformal Electrodeposition for 3-Dimensional Interconnects," Isr. J. Chem., 50, 312-320(2010). https://doi.org/10.1002/ijch.201000029
  28. Cho, S.-K., Kim, M.-J., Koo, H.-C., Kim, S.-K. and Kim, J.-J., "An Empirical Relation Between the Plating Process and Accelerator Coverage in Cu Superfilling," Bull. Korean Chem. Soc., 33, 1603-1607(2012). https://doi.org/10.5012/bkcs.2012.33.5.1603
  29. Moffat, T., Bonevich, J., Huber, W., Stanishevsky, A., Kelly, D., Stafford, G. and Josell, D., "Superconformal Electrodeposition of Copper in 500-90 nm Features," J. Electrochem. Soc., 147, 4524-4535(2000). https://doi.org/10.1149/1.1394096
  30. Zhang, Y., Ding, G., Wang, H. and Cheng, P., "Effect of External Factors on Copper Filling in 3D Integrated Through-Silicon Vias (TSVs)," J. Electrochem. Soc., 162, D427-D434(2015). https://doi.org/10.1149/2.0111509jes
  31. Kondo, K., Suzuki, Y., Saito, T., Okamoto, N. and Takauchi, M., "High Speed Through Silicon Via Filling by Copper Electrodeposition," Electrochem. Solid-State Lett., 13, D26-D28(2010). https://doi.org/10.1149/1.3313451
  32. Hayashi, T., Kondo, K., Saito, T., Takeuchi, M. and Okamoto, N., "High-Speed Through Silicon Via(TSV) Filling Using Diallylamine Additive II. Optimization of Diallylamine Concentration," J. Electrochem. Soc., 158, D715-D718(2011). https://doi.org/10.1149/2.076112jes
  33. Hayashi, T., Kondo, K., Saito, T., Okamoto, N., Yokoi, M., Takeuchi, M., Bunya, M., Marunaka, M. and Tsuchiya, T., "Correlation Between Filled Via and Produced Cuprous Ion Concentration by Reverse Current Waveform," J. Electrochem. Soc., 160, D256-D259(2013). https://doi.org/10.1149/2.092306jes
  34. Sun, J.-J., Kondo, K., Okamura, T., Oh, S., Tomisaka, M., Yonemura, H., Hoshino, M. and Takahashi, K., "High-Aspect-Ratio Copper Via Filling Used for Three-Dimensional Chip Stacking," J. Electrochem. Soc., 150, G355-G358(2003). https://doi.org/10.1149/1.1572154
  35. Luhn, O., Van Hoof, C., Ruythooren, W. and Celis, J.-P., "Filling of Microvia with an Aspect Ratio of 5 by Copper Electrodeposition," Electrochim. Acta, 54, 2504-2508(2009). https://doi.org/10.1016/j.electacta.2008.04.002
  36. Casas, J., Alvarez, F. and Cifuentes, L., "Aqueous Speciation of Sulfuric Acid-Cupric Sulfate Solutions," Chem. Eng. Sci., 55, 6223-6234(2000). https://doi.org/10.1016/S0009-2509(00)00421-8
  37. Moffat, T. and Josell, D., "Extreme Bottom-Up Superfilling of Through-Silicon-Vias by Damascene Processing: Suppressor Disruption, Positive Feedback and Turing Patterns," J. Electrochem. Soc., 159, D208-D216(2012). https://doi.org/10.1149/2.040204jes
  38. Josell, D., Wheeler, D. and Moffat, T., "Modeling Extreme Bottom- Up Filling of Through Silicon Vias," J. Electrochem. Soc., 159, D570-D576(2012). https://doi.org/10.1149/2.009210jes
  39. Wheeler, D., Moffat, T. and Josell, D., "Spatial-Temporal Modeling of Extreme Bottom-Up Filling of Through-Silicon-Vias," J. Electrochem. Soc., 160, D3260-D3265(2013). https://doi.org/10.1149/2.040312jes
  40. Yang, L., Radisic, A., Deconinck, J. and Vereecken, P. M., "Stochastic Modeling of Polyethylene Glycol as a Suppressor in Copper Electroplating," J. Electrochem. Soc., 161, D269-D276(2014). https://doi.org/10.1149/2.072405jes
  41. Josell, D. and Moffat, T., "Extreme Bottom-Up Filling of Through Silicon Vias and Damascene Trenches With Gold in a Sulfite Electrolyte," J. Electrochem. Soc., 160, D3035-D3039(2013). https://doi.org/10.1149/2.007312jes
  42. Josell, D. and Moffat, T., "Bottom-Up Electrodeposition of Zinc in Through Silicon Vias," J. Electrochem. Soc., 162, D129-D135(2015). https://doi.org/10.1149/2.0031504jes
  43. Josell, D. and Moffat, T., "Superconformal Bottom-Up Nickel Deposition in High Aspect Ratio Through Silicon Vias," J. Electrochem. Soc., 163, D322-D331(2016). https://doi.org/10.1149/2.1151607jes
  44. Luhn, O., Radisic, A., Vereecken, P., Van Hoof, C., Ruythooren, W. and Celis, J.-P., "Changing Superfilling Mode for Copper Electrodeposition in Blind Holes from Differential Inhibition to Differential Acceleration," Electrochem. Solid-State Lett., 12, D39-D41(2009). https://doi.org/10.1149/1.3087790
  45. Luhn, O., Radisic, A., Van Hoof, C., Ruythooren, W. and Celis, J.-P., "Monitoring the Superfilling of Blind Holes with Electrodeposited Copper," J. Electrochem. Soc., 157, D242-D247(2010). https://doi.org/10.1149/1.3301623
  46. Hayase, M. and Otsubo, K., "Copper Deep Via Filling with Selective Accelerator Deactivation by a Reverse Pulse," J. Electrochem. Soc., 157, D628-D632(2010). https://doi.org/10.1149/1.3499612
  47. Matsuoka, T., Otsubo, K., Onishi, Y., Amaya, K. and Hayase, M., "Inverse Analysis of Accelerator Distribution in Copper Through Silicon Via Filling," Electrochim. Acta, 82, 356-362(2012). https://doi.org/10.1016/j.electacta.2012.05.136
  48. Hayase, M. and Nagao, M., "Copper Deep Via Filling with Selective Accelerator Deactivation by Polyethyleneimine," J. Electrochem. Soc., 160, D3216-D3220(2013). https://doi.org/10.1149/2.036312jes
  49. Kim, H. C., Choe, S., Cho, J. Y., Lee, D., Jung, I., Cho, W.-S., Kim, M. J. and Kim, J. J., "Bottom-Up Filling of Through Silicon Vias Using Galvanostatic Cu Electrodeposition with the Modified Organic Additives," J. Electrochem. Soc., 162, D109-D114(2015). https://doi.org/10.1149/2.0391506jes
  50. Moffat, T., Wheeler, D. and Josell, D., "Electrodeposition of Copper in the SPS-PEG-Cl Additive System I. Kinetic Measurements: Influence of SPS," J. Electrochem. Soc., 151, C262-C271 (2004). https://doi.org/10.1149/1.1651530
  51. Delbos, E., Omnes, L. and Etcheberry, A., "Bottom-Up Filling Optimization for Efficient TSV Metallization," Microelectron. Eng., 87, 514-516(2010). https://doi.org/10.1016/j.mee.2009.06.008
  52. Tsai, T.-H. and Huang, J.-H., "Copper Electrodeposition in a Through-Silicon Via Evaluated by Rotating Disc Electrode Techniques," J. Micromech. Microeng., 20, 115023(2010). https://doi.org/10.1088/0960-1317/20/11/115023
  53. Cao, H., Hang, T., Ling, H. and Li, M., "Behaviors of Chloride Ions in Methanesulfonic Acid Bath for Copper Electrodeposition of Through-Silicon-Via," J. Electrochem. Soc., 160, D146-D149(2013). https://doi.org/10.1149/2.052304jes
  54. Yang, L., Radisic, A., Deconinck, J. and Vereecken, P. M., "Modeling the Bottom-Up Filling of Through-Silicon Vias Through Suppressor Adsorption/Desorption Mechanism," J. Electrochem. Soc., 160, D3051-D3056(2013). https://doi.org/10.1149/2.010312jes
  55. Kim, M. J., Kim, H. C., Choe, S., Cho, J. Y., Lee, D., Jung, I., Cho, W.-S. and Kim, J. J., "Cu Bottom-Up Filling for Through Silicon Vias with Growing Surface Established by the Modulation of Leveler and Suppressor," J. Electrochem. Soc., 160, D3221- D3227(2013). https://doi.org/10.1149/2.037312jes
  56. Kim, M. J., Seo, Y., Kim, H. C., Lee, Y., Choe, S., Kim, Y. G., Cho, S. K. and Kim, J. J., "Galvanostatic Bottom-Up Filling of TSV-like Trenches: Choline-based Leveler Containing Two Quaternary Ammoniums," Electrochim. Acta, 163, 174-181(2015). https://doi.org/10.1016/j.electacta.2015.02.173
  57. Yanson, Y. I. and Rost, M. J., "Structural Accelerating Effect of Chloride on Copper Electrodeposition," Angew. Chem. Int. Ed., 52, 2454-2458(2013). https://doi.org/10.1002/anie.201207342
  58. Nagy, Z., Blaudeau, J., Hung, N., Curtiss, L. and Zurawski, D., "Chloride Ion Catalysis of the Copper Deposition Reaction," J. Electrochem. Soc., 142, L87-L89(1995). https://doi.org/10.1149/1.2044254
  59. Moffat, T. P. and Yang, L.-Y. O., "Accelerator Surface Phase Associated with Superconformal Cu Electrodeposition," J. Electrochem. Soc., 157, D228-D241(2010). https://doi.org/10.1149/1.3298852
  60. Feng, Z. V., Li, X. and Gewirth, A. A., "Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: a Surface-Enhanced Raman Study," J. Phys. Chem. B, 107, 9415-9423(2003).
  61. Dow, W.-P., Huang, H.-S., Yen, M.-Y. and Chen, H.-H., "Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition II. Studies Using EPR and Galvanostatic Measurements," J. Electrochem. Soc., 152, C77-C88(2005). https://doi.org/10.1149/1.1849935
  62. Kim, H. C., Kim, M. J., Choe, S., Lim, T., Park, K. J., Kim, K. H., Ahn, S. H., Kim, S.-K. and Kim, J. J., "Electrodeposition of Cu Films with Low Resistivity and Improved Hardness Using Additive Derivatization," J. Electrochem. Soc., 161, D749-D755 (2014). https://doi.org/10.1149/2.0271414jes
  63. Kondo, K., Yamada, Y. and Yokoi, M., "TSV Fillings and Electrochemical Measurements of the Dialyl-amine Additive with $Cl^-$ and $Br^-$," J. Electrochem. Soc., 162, D397-D400(2015). https://doi.org/10.1149/2.1011508jes
  64. Kim, M. J., Seo, Y., Oh, J. H., Lee, Y., Kim, H. C., Kim, Y. G. and Kim, J. J., "Communication-Halide Ions in TEG-Based Levelers Affecting TSV Filling Performance," J. Electrochem. Soc., 163, D185-D187(2016). https://doi.org/10.1149/2.0101606jes
  65. Kim, M. J., Kim, H. C. and Kim, J. J., "The Influences of Iodide Ion on Cu Electrodeposition and TSV Filling," J. Electrochem. Soc., 163, D434-D441(2016). https://doi.org/10.1149/2.1111608jes
  66. Choe, S., Kim, M. J., Kim, H. C., Lim, T., Park, K. J., Kim, K. H., Ahn, S. H., Lee, A., Kim, S.-K. and Kim, J. J., "Degradation of Poly(ethylene glycol-propylene glycol) Copolymer and Its Influences on Vopper Electrodeposition," J. Electroanal. Chem., 714-715, 85-91(2014). https://doi.org/10.1016/j.jelechem.2013.12.023
  67. Choe, S., Kim, M. J., Kim, K. H., Kim, H. C., Jeon, Y., Kim, T. Y., Kim, S.-K. and Kim, J. J., "High Accuracy Concentration Analysis of Accelerator Components in Acidic Cu Superfilling Bath," J. Electrochem. Soc., 163, D33-D39(2016).
  68. Kim, M. J., Cho, S. K., Koo, H.-C., Lim, T., Park, K. J. and Kim, J. J., "Pulse Electrodeposition for Improving Electrical Properties of Cu Thin Film," J. Electrochem. Soc., 157, D564-D569(2010). https://doi.org/10.1149/1.3481564
  69. Lu, L., Shen, Y., Chen, X., Qian, L. and Lu, K., "Ultrahigh Strength and High Electrical Conductivity in Copper," Science, 304, 422-426(2004). https://doi.org/10.1126/science.1092905
  70. Jin, S., Wang, G. and Yoo, B., "Through-Silicon-Via (TSV) Filling by Electrodeposition of Cu with Pulse Current at Ultra-Short Duty Cycle," J. Electrochem. Soc., 160, D3300-D3305(2013). https://doi.org/10.1149/2.050312jes
  71. Jin, S., Seo, S., Wang, G. and Yoo, B., "Electrodeposition of Nanotwin Cu by Pulse Current for Through-Si-Via (TSV) Process," J. Nanosci. Nanotechnol., 16, 5410-5414(2016). https://doi.org/10.1166/jnn.2016.12244
  72. Hong, S. C., Lee, W. G., Kim, W. J., Kim, J. H. and Jung, J. P., "Reduction of Defects in TSV Filled with Cu by High-Speed 3-Step PPR for 3D Si Chip Stacking," Microelectron. Reliab., 51, 2228-2235(2011). https://doi.org/10.1016/j.microrel.2011.06.031
  73. Zhu, Q., Toda, A., Zhang, Y., Itoh, T. and Maeda, R., "Void-Free Copper Filling of Through Silicon Via by Periodic Pulse Reverse Electrodeposition," J. Electrochem. Soc., 161, D263-D268(2014). https://doi.org/10.1149/2.073405jes
  74. Kim, M. J., Lim, T., Park, K. J., Cho, S. K., Kim, S.-K. and Kim, J. J., "Characteristics of Pulse-Reverse Electrodeposited Cu Thin Films: I. Effects of the Anodic Step in the Absence of an Organic Additive," J. Electrochem. Soc., 159, D538-D543(2012). https://doi.org/10.1149/2.045209jes
  75. Kim, M. J., Lim, T., Park, K. J., Kwon, O. J., Kim, S.-K. and Kim, J. J., "Characteristics of Pulse-Reverse Electrodeposited Cu Thin Film: II. Effects of Organic Additives," J. Electrochem. Soc., 159, D544-D548(2012). https://doi.org/10.1149/2.046209jes
  76. Kim, M. J., Lim, T., Park, K. J., Kim, S.-K. and Kim, J. J., "Pulse- Reverse Electrodeposition of Cu for the Fabrication of Metal Interconnection I. Effects of Anodic Steps on the Competitive Adsorption of the Additives Used for Superfilling," J. Electrochem. Soc., 160, D3081-D3087(2013). https://doi.org/10.1149/2.015312jes
  77. Kim, M. J., Lim, T., Park, K. J., Kim, S.-K. and Kim, J. J., "Pulse- Reverse Electrodeposition of Cu for the Fabrication of Metal Interconnection II. Enhancement of Cu Superfilling and Leveling," J. Electrochem. Soc., 160, D3088-D3092(2013). https://doi.org/10.1149/2.016312jes
  78. Wang, Z., Wang, H., Cheng, P., Ding, G. and Zhao, X., "Simultaneous Filling of Through Silicon Vias (TSVs) with Different Aspect Ratios Using Multi-Step Direct Current Density," J. Micromech. Microeng., 24, 085013(2014). https://doi.org/10.1088/0960-1317/24/8/085013
  79. Kim, H. C., Kim, M. J., Seo, Y., Lee, Y., Choe, S., Kim, Y. G., Cho, S. K. and Kim, J. J., "Bottom-Up Filling of TSV-Scaled Trenches by Using Step Current Electrodeposition," ECS Electrochem. Lett., 4, D31-D34(2015). https://doi.org/10.1149/2.0061510eel

Cited by

  1. Effects of Organic Additives on Grain Growth in Electrodeposited Cu Thin Film during Self-Annealing vol.164, pp.13, 2017, https://doi.org/10.1149/2.0481713jes
  2. 무전해 구리도금 된 흑연 섬유의 발열 특성 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.264
  3. Changes in Electrical Properties of Copper-Plated Layer by Organic Additives on High Current Density vol.58, pp.1, 2020, https://doi.org/10.3365/kjmm.2020.58.1.41
  4. 고전류밀도 구리도금공정에서 알시안블루(Alcian Blue) 농도와 기계적 특성과의 상관관계 vol.30, pp.4, 2016, https://doi.org/10.3740/mrsk.2020.30.4.160
  5. Effects of JGB Additives on the Microstructures and Electrical Properties of Electroplated Copper Foil vol.59, pp.6, 2016, https://doi.org/10.3365/kjmm.2021.59.6.404
  6. Through Silicon Via Filling with Suppression Breakdown of PEG-Br- in Absence of Accelerator vol.168, pp.8, 2021, https://doi.org/10.1149/1945-7111/ac1eb8