Formation of Hollow Cu Through-Vias for MEMS Packages

MEMS 패키지용 Hollow Cu 관통비아의 형성공정

  • Choi, J.Y. (Department of Materials Science and Engineering, Hongik University) ;
  • Kim, M.Y. (Department of Materials Science and Engineering, Hongik University) ;
  • Moon, J.T. (SOP Technology Team, IT Convergence & Components Laboratory, ETRI) ;
  • Oh, T.S. (Department of Materials Science and Engineering, Hongik University)
  • 최정열 (홍익대학교 신소재공학과) ;
  • 김민영 (홍익대학교 신소재공학과) ;
  • 문종태 (한국전자통신연구원 IT 융합부품연구소 SOP 연구팀) ;
  • 오태성 (홍익대학교 신소재공학과)
  • Published : 2009.12.30

Abstract

In order to investigate the formation behavior of hollow Cu via for MEMS packaging, we observed the microstructure of the Cu vias and measured the average thickness and the thickness deviation with variations of pulse-reverse pulse current density and electrodeposition time. With electrodeposition for 3 hours at the pulse and reverse pulse current densities of $-5\;mA/cm^2$ and $15\;mA/cm^2$, the average thickness and the thickness deviation of the Cu vias were $5\;{\mu}m$ and $0.63\;{\mu}m$, respectively. With increasing the electrodeposition time to 6 hours, it was possible to form the Cu vias, of which the average thickness and thickness variation of the Cu vias were $10\;{\mu}m$ and $1\;{\mu}m$, respectively. With increasing the pulse and reverse pulse current densities to $-10\;mA/cm^2$ and $30\;mA/cm^2$, Cu vias of uniform thickness could not be formed due to the faster increase of the thickness deviation than that of the average thickness with increasing the electrodeposition time.

MEMS 패키징용 hollow Cu 비아의 형성거동을 분석하기 위해, 펄스-역펄스 전류밀도 및 도금시간에 따른 hollow Cu 비아의 미세구조를 관찰하고 평균 두께 및 두께 편차를 측정하였다. 펄스-역펄스 전류밀도를 $-5\;mA/cm^2$$15\;mA/cm^2$로 유지하며 3시간 도금시 hollow Cu 비아의 평균 도금두께는 $5\;{\mu}m$이었으며 표준편차는 $0.63\;{\mu}m$이었다. 도금시간을 6시간으로 증가시 평균 도금두께는 $10\;{\mu}m$, 표준편차는 $1\;{\mu}m$로 균일한 두께의 hollow Cu 비아를 형성하는 것이 가능하였다. 펄스-역펄스 전류밀도를 $-10\;mA/cm^2$$30\;mA/cm^2$ 이상으로 증가시킨 경우에는 도금시간 증가에 따라 도금두께보다 도금두께의 표준편차가 더 크게 증가하여 균일한 hollow Cu 비아의 형성이 어려웠다.

Keywords

References

  1. S. H. Park, T. S. Oh, Y. S. Eum, and J. T. Moon, "Interconnection processes using Cu vias for MEMS sensor packages", J. Microelectron. Packag. Soc., 14 (2007) 63-69.
  2. S. K. Kim, T. S. Oh, and J. T. Moon, "Cap formation process for MEMS packages using Cu/Sn rim bonding", J. Microelectron. Packag. Soc., 15 (2008) 31-39.
  3. A. C. Imhoff, "Packaging technologies for RFICs : current status and future trends", 1999 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., (1999) p.7
  4. H. Reichl, V. Grosser, "Overview and development trends in the field of MEMS packaging", Proc. IEEE MEMS 2001 Conf., (2001) pp.1-5.
  5. C. Statter, E. Olson, and K. Farmer, "Design and fabrication of a miniature pressure sensor head using direct bonded ultrathin silicon wafers", J. Micromech. Microeng., 7 (1996) 108-110.
  6. T. Seki T, S. Sato, T. Masuda, I. Kimura, and K. Imanaka K, "Low-loss RF MEMS metal-to-metal contact switch with CSP structure", Tech. Dig. 12th Int. Conf. Solid-state Sensors, Actuators and Microsystems, Boston, MA, (2003) pp.340-341.
  7. M. Sakata, Y. Komura, T. Seki, K. Kobayashi, K. Sano, and S. Horike, "Micromachined relay switch which utilizes single crystal silicon electrostatic actuator", Proc. 12th IEEE Int. Conf. MEMS, Orlando, FL, (1999) pp.21-24.
  8. R. M. Henderson and L. P. B. Katehi, "Silicon-based micromachined packages for high-frequency application", IEEE Trans. Micro. Theory Tech., 47 (1999) 1563-1569. https://doi.org/10.1109/22.780409
  9. A. Margomenos and L. P. B. Katehi, "Fabrication and accelerated hermeticity testing of and on-wafer package for RF MEMS", IEEE Trans. Micro. Theory Tech., 52 (2004) 1626-1636. https://doi.org/10.1109/TMTT.2004.828467
  10. Y. K. Park, H. W. Park, D. J. Lee, J. H. Park, J. S. Song, C. W. Kim, Y. H. Lee, C. J. Kim, and B. K. Ju, "A novel lowloss wafer-level packaging of the RF-MEMS devices", Proc. 15th IEEE Int. Conf. MEMS. Las Vegas, NV, (2002) pp 681-681.
  11. U. Klein, "The advent of silicon microphones in high-volume applications", MST News, (2001).
  12. Y. K. Park, Y. K. Kim, H. Kim, D. J. Lee, C. J. Kim, B. K. Ju, and J. O. Park, "A novel thin chip scale packaging of the RF-MEMS devices using ultra thin silicon", IEEE MEMS Conf., (2003) p.73.
  13. P. Arunasalam, H. D. Ackler, and B. G. Sammakia, "Process integration for through-silicon vias", J. Vac. Sci. Technol., B24 (2006) 1780-1784.
  14. C. Ryu, J. Park, J. S. Pak, K. Y. Lee, T. S. Oh, and J. Kim, "Suppression of power/ground inductive impedance and simultaneous switching noise using silicon through-via in a 3-D stacked chip package", IEEE Microwave Wireless Comp. Lett., 17 (2007) 855-857. https://doi.org/10.1109/LMWC.2007.910485
  15. K. W. Lee, Teck-Soo Oh, J. H. Lee, and T. S. Oh, "Electrical characteristics of the three-dimensional interconnection structure for the chip stack package with Cu through vias", J. Electron. Mater., 36 (2007) 123-128. https://doi.org/10.1007/s11664-006-0020-5
  16. W. P. Dow and C. W. Liu, "Evaluating the filling performance of a copper plating formula using a simple galvanostat method", J. Electrochem. Soc., 153 (2006) C190-C194. https://doi.org/10.1149/1.2165743
  17. T. Kobayashi, J. Kawasaki, K. Mihara, H. Honma, "Via-filling using electroplating for build-up PCBs", Electrochimica Acta, 47 (2001) 85-89. https://doi.org/10.1016/S0013-4686(01)00592-8
  18. D. Varadarajan, C. Y. Lee, A. Krishnamoorthy, D. J. Duquette, and W. N. Gill, "A tertiary current distribution model for the pulse plating of copper into high aspect ratio sub-0.25 ${\mu}m$ trenches", J. Electrochem. Soc., 147 (2000) 3382-3392. https://doi.org/10.1149/1.1393910