• Title/Summary/Keyword: Cu/Sn/Cu bump

Search Result 107, Processing Time 0.025 seconds

The Chip Bonding Technology on Flexible Substrate by Using Micro Lead-free Solder Bump (플렉서블 기반 미세 무연솔더 범프를 이용한 칩 접합 공정 기술)

  • Kim, Min-Su;Ko, Yong-Ho;Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.15-20
    • /
    • 2012
  • In electronics industry, the coming electronic devices will be expected to be high integration and convergence electronics. And also, it will be expected that the coming electronics will be flexible, bendable and wearable electronics. Therefore, the demands and interests of bonding technology between flexible substrate and chip for mobile electronics, e-paper etc. have been increased because of weight and flexibility of flexible substrate. Considering fine pitch for high density and thermal damage of flexible substrate during bonding process, the micro solder bump technology for high density and low temperature bonding process for reducing thermal damage will be required. In this study, we researched on bonding technology of chip and flexible substrate by using 25um Cu pillar bumps and Sn-Bi solder bumps were formed by electroplating. From the our study, we suggest technology on Cu pillar bump formation, Sn-Bi solder bump formation, and bonding process of chip and flexible substrate for the coming electronics.

Effects of Intermetallic Compounds Formed during Flip Chip Process on the Interfacial Reactions and Bonding Characteristics (플립칩 공정시 반응생성물이 계면반응 및 접합특성에 미치는 영향)

  • Ha, Jun-Seok;Jung, Jae-Pil;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.35-39
    • /
    • 2012
  • We studied interfacial reaction and bonding characteristics of a flip chip bonding with the viewpoint of formation behavior of intermetallic compounds. For this purpose, Sn-0.7Cu and Sn-3Cu solders were reflowed on the Al/Cu and Al/Ni UBMs. When Sn-0.7Cu was reflowed on the Al/Cu UBM, no intermetallic compounds were formed at the solder/UBM interface. The $Cu_6Sn_5$ intermetallic compounds formed by reflowing Sn-3Cu solder on the Al/Cu UBM were spalled from the interface, resulting in delamination of the solder/UBM interface. On the other hand, the $(Cu,Ni)_6Sn_5$ intermetallic compounds were formed by reflowing of Sn-0.7Cu and Sn-3Cu on the Al/Ni UBM and the interfacial bonding between the Sn-Cu solders and the Al/Ni UBM was kept stable.

Study on Joint of Micro Solder Bump for Application of Flexible Electronics (플렉시블 전자기기 응용을 위한 미세 솔더 범프 접합부에 관한 연구)

  • Ko, Yong-Ho;Kim, Min-Su;Kim, Taek-Soo;Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.4-10
    • /
    • 2013
  • In electronic industry, the trend of future electronics will be flexible, bendable, wearable electronics. Until now, there is few study on bonding technology and reliability of bonding joint between chip with micro solder bump and flexible substrate. In this study, we investigated joint properties of Si chip with eutectic Sn-58Bi solder bump on Cu pillar bump bonded on flexible substrate finished with ENIG by flip chip process. After flip chip bonding, we observed microstructure of bump joint by SEM and then evaluated properties of bump joint by die shear test, thermal shock test, and bending test. After thermal shock test, we observed that crack initiated between $Cu_6Sn_5IMC$ and Sn-Bi solder and then propagated within Sn-Bi solder and/or interface between IMC and solder. On the other hands, We observed that fracture propated at interface between Ni3Sn4 IMC and solder and/or in solder matrix after bending test.

Intermetallic Formation between Sn-Ag based Solder Bump and Ni Pad in BGA Package (BGA 패키지에서 Sn-Ag계 솔더범프와 Ni pad 사이에 형성된 금속간화합물의 분석)

  • Yang, Seung-Taek;Chung, Yoon;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2002
  • The intermetallic formation between Sn-Ag-(Cu) solders and metal pads in a real BGA package was characterized using SEM, EDS, and XRD. The intermetallic phase formed in the interface between Sn-Ag-Cu and Au/Ni/Cu pad is likely to be ternary compound of $(Cu,Ni)_6Sn_5$ from EDS analysis High concentration of Cu was observed in the solder/Ni interface. XRD analysis confirmed that $\eta -Cu_6 Sn_5$ type was intermetallic phase formed in the interface between Cu containing solders and Ni substrates and $Ni_3$Sn_4$ intermetallic was formed in the Sn-Ag solder/Ni interface. The thickness of intermetallic phase increased with the reflow times and Cu concentration in solder.

  • PDF

Joining characteristics of BGA solder bump by induction heating (유도가열에 의한 BGA 솔더 범프의 접합특성에 관한 연구)

  • 방한서;박현후
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.86-88
    • /
    • 2003
  • The characteristic of induction heating solder bump(solder ball: Sn-37Pb, Sn-3.5Ag, Sn-3.0Ag-0.5Cu) has analyzed in this paper. The initial condition of induction heating depends on the time and current. The shape of lead-free solder bump is better than lead solder. The shear strength of lead solder bump has decreased with aging time. The average of shear strength of solder bump is about 10N, 11N, and 11N respectively. The lead-free solder bump's shear strength is better than lead solder and varies irregularly with aging time.

  • PDF

Shear Strength of the ${Cu_6}{Sn_5}$-dispersed Sn-Pb Solder Bumps Fabricated by Screen Printing Process (${Cu_6}{Sn_5}$를 분산시켜 스크린 프린팅법으로 제조한 Sn-Pb 솔더범프의 전단강도)

  • Choe, Jin-Won;Lee, Gwang-Eung;Cha, Ho-Seop;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.799-806
    • /
    • 2000
  • Cu$_{6}$Sn$_{5}$-dispersed 63Sn-37Pb solder bumps of 760$\mu\textrm{m}$ size were fabricated on Au(0.5$\mu\textrm{m}$)/Ni(5$\mu\textrm{m}$)/Cu(27$\pm$20$\mu\textrm{m}$) BGA substrates by screen printing process, and their shear strength were characterized with variations of dwell time at reflow peak temperature and aging time at 15$0^{\circ}C$ . With dwell time of 30 seconds at reflow peak temperature, the solder bumps with Cu$_{6}$Sn$_{5}$ dispersion exhibited higher shear strength than the value of the 63Sn-37Pb solder bump. With increasing the dwell time longer than 60 seconds, however the shear strength of the Cu$_{6}$Sn$_{5}$-dispersed solder bumps became lower than that the 63Sn-37Pb solder bumps. The failure surface of the solder bumps could be divided into two legions of slow crack propagation and critical crack propagation. The shear strength of the solder bumps was inversely proportional to the slow crack propagation length, regardless of the dwell time at peak temperature, aging time at 150 $^{\circ}C$ and the volume fraction of Cu$_{6}$Sn$_{5}$ dispersion.> 5/ dispersion.

  • PDF

Interfacial Reaction and Shear Energy of Sn-52In Solder on Ti/Cu/Au UBM with Variation of Au Thickness and Reflow Temperature (Ti/Cu/Au UBM의 Au 두께와 리플로우 온도에 따른 Sn-52In 솔더와의 계면반응 및 전단 에너지)

  • Choi Jae-Hoon;Jun Sung-Woo;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.87-93
    • /
    • 2005
  • Interfacial reactions between 48Sn-52In solder and $0.1{\mu}m$ Ti/3 ${\mu}m$ Cu/Au under bump metallurgies(UBM) with various Au thickness of $0.1{\~}0.7{\mu}m$ have been investigated after solder reflow at $150^{\circ}C,\;200^{\circ}C$, and $250^{\circ}C$ for 1 minute. Ball shear strength and shear energy of the Sn-52In solder bump on each UBM was also evaluated. With reflowing at $150^{\circ}C$ and $200^{\circ}C$, $Cu_6(Sn,In)_5$ and $AuIn_2$ intermetallic compounds were formed at UBW solder interface. However, UBM was consumed almost completely with reflowing at $250^{\circ}C$. While ball shear strength was not consistent with UBM/solder reactions, ball shear energy matched well with UBM/solder reactions.

  • PDF

Effects of PCB Surface Finishes on in-situ Intermetallics Growth and Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (PCB 표면처리에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 in-situ 금속간 화합물 성장 및 Electromigration 특성 분석)

  • Kim, Sung-Hyuk;Park, Gyu-Tae;Lee, Byeong-Rok;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • The effects of electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) surface finishes on the in-situ intermetallics reaction and the electromigration (EM) reliability of Sn-3.0Ag-0.5Cu (SAC305) solder bump were systematically investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of the ENIG surface finish at solder top side, while at the OSP surface finish at solder bottom side,$ Cu_6Sn_5$ and $Cu_3Sn$ IMCs were formed. Mean time to failure on SAC305 solder bump at $130^{\circ}C$ with a current density of $5.0{\times}10^3A/cm^2$ was 78.7 hrs. EM open failure was observed at bottom OSP surface finish by fast consumption of Cu atoms when electrons flow from bottom Cu substrate to solder. In-situ scanning electron microscope analysis showed that IMC growth rate of ENIG surface finish was much lower than that of the OSP surface finish. Therefore, EM reliability of ENIG surface finish was higher than that of OSP surface finish due to its superior barrier stability to IMC reaction.

Interfacial Reactions of Sn Solder with Variations of Under-Bump-Metallurgy and Reflow Time (Under Bump Metallurgy의 종류와 리플로우 시간에 따른 Sn 솔더 계면반응)

  • Park, Sun-Hee;Oh, Tae-Sung;Englemann, G.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Thickness of intermetallic compounds and consumption rates of under bump metallurgies (UBMs) were investigated in wafer-level solder bumping with variations of UBM materials and reflow times. In the case of Cu UBM, $0.6\;{\mu}m-thick$ intermetallic compound layer was formed before reflow of Sn solder, and the average thickness of the intermetallic compound layer increased to $4\;{\mu}m$ by reflowing at $250^{\circ}C$ for 450 sec. On the contrary, the intermetallic layer had a thickness of $0.2\;{\mu}m$ on Ni UBM before reflow and it grew to $1.7\;{\mu}m$ thickness with reflowing for 450 sec. While the consumption rates of Cu UBM were 100nm/sec fur 15-sec reflow and 4.50-sec for 450-sec reflow, those of Ni UBM decreased to 28.7 nm/sec for 15-sec reflow and 1.82 nm/sec for 450-sec reflow.

  • PDF

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.