• Title/Summary/Keyword: Crystallization of amorphous phase

Search Result 224, Processing Time 0.026 seconds

Alternating Magnetic Field Crystallization of Amorphous Si Films

  • Kang, K.H.;Park, S.H.;Lee, S.J.;Nam, S.E.;Kim, H.J.
    • Journal of Information Display
    • /
    • v.4 no.1
    • /
    • pp.34-37
    • /
    • 2003
  • We investigate the solid phase crystallization of amorphous Si films on glass substrates under alternating magnetic field induction. The kinetics of crystallization are found to be greatly enhanced by alternating magnetic field. While complete crystallization takes heat treatment of more than 14 hours at 570$^{\circ}C$, it can be reduced by applying the megnetic field to 20 minutes. It is assumed that the enhancement of crystallization is associated with an electromotive force voltage generated by alternating magnetic field. This electric field applied in the amorphous Si may possibly be the reason for acceleration of the atomic mobility of crystallization through the modification of atomic potentials

Microstructural Evolution and Dielectric Response Characteristics During Crystallization of Amorphous Pb(Fe2/3W1/3)O3

  • Kim, Nam-Kyung;David A. Payne
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.75-80
    • /
    • 1995
  • Development of phases, evolution of microstructures, and dielectric response characteristics of amorphous lead iron tungstates during crystabllization were investiageted. A series of mircographs showing the evolution sequence of microstructures is presented. Crystallization was observed to initiate from inside of the amorphous material. A cubic perovskite phase developed fully at $760^{\circ}C$ from amorphous state via intermediate metastable crystalline structures. Dielectric constant of amorphous PFM was totally insensitive to the temperature change around the Curie temperature of crystalline material. Sintered pellet, with relative density of 96% and an almost pore-free dense internal microstructure, could be prepared from amorphous powder.

  • PDF

Solid Phase Crystallization Kinetics of Amorphous Silicon at High Temperatures

  • Hong, Won-Eui;Kim, Bo-Kyung;Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.48-50
    • /
    • 2008
  • Solid phase crystallization (SPC) of amorphous silicon is usually conducted at around $600^{\circ}C$ since it is used in the application of flat panel display using thermally susceptible glass substrate. In this study we conducted SPC experiments at temperatures higher than $600^{\circ}C$ using silicon wafers. Crystallization rate becomes dramatically rapid at higher temperatures since SPC kinetics is controlled by nucleation with high value of activation energy. We report SPC kinetics of high temperatures compared to that of low temperatures.

Crystallization of Ba-ferrite/sapphire(001) Thin Films Studied by Real-Time Synchrotron X-ray Scattering

  • Cho, Tae-Sik
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.51-54
    • /
    • 2002
  • The crystallization of amorphous Ba-ferrite/sapphire(001) thin films was studied in real-time synchrotron x-ray scattering experiments. In the sputter-grown amorphous films, we found the existence of epitaxial $Fe_3O_4$ interfacial crystallites (50-${\AA}$-thick), well aligned $[0.03^circ$full-width at half-maximum (FWHM)] to the sapphire [001] direction. The amorphous precursor was crystallized to epitaxial Ba-ferrite and \alpha-Fe_2O_3$grains in two steps; i) the nucleation of crystalline \alpha-Fe_2O_3$ phase started at $300^circ{C}$ together with the transformation of the $Fe_3O_4$ crystallites to the \alpha-Fe_2O_3$ crystallites, ii) the nucleation of Ba-ferrite phase occurred at temperature above $600^circ{C}$. In the crystallized films irrespective of the film thickness, the crystal domain size of the \alpha-Fe_2O_3$grains was about 250 ${\AA}$ in the film plane, similar to that of the Ba-ferrite grains.

Low temperature solid phase crystallization of amorphous silicon thin film by crystalline activation

  • Kim, Hyung-Taek;Kim, Young-Kwan
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.97-100
    • /
    • 1998
  • We have investigated the effects of crystalline activation on solid phase crystallization (SPC) of amorphous silicon (a-Si) thin films. Wet blasting and self ion implantation were employed as the activation treatments to induce macro or micro crystalline damages on deposited a-Si films. Low temperature and larger grain crystallization were obtained by the applied two-step activation. High degree of crystallinity was also observed on both furnace and rapid SPC. crystalline activations showed the promotion of nucleation on the activated regions and the retardation of growth in an amorphous matrix in SPC. The observed behavior of two-step SPC was strongly dependent on the applied activation and annealing processes. It was also found that the diversified effects by macro and micro activations on the SPC were virtually diminished as the annealing temperature increased.

  • PDF

Changes of Getter properties by Crystallization of Amorphous Zr-V-Ti alloy Powders (비정질 Zr-V-Ti 합금분말의 결정화에 따른 게터 특성 변화)

  • Park, Je-Shin;Kim, Won-Baek;Baek, Jin-Sun
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.50-55
    • /
    • 2007
  • The hydrogen sorption speeds of $Zr_{57}V_{36}Ti_7$ amorphous alloy and its crystallized alloys were evaluated at room temperature. $Zr_{57}V_{36}Ti_7$ amorphous alloy was prepared by ball milling. The hydrogen sorption rate of the partially crystallized alloy was higher than that of amorphous. The enhanced sorption rate of partially crystallized alloy was explained in terms of grain refinement that has been known to promote the diffusion into metallic bulk of the gases. The grain refinement could be obtained by crystallization of amorphous phase resulting in the observed increase in sorption property.

SPC Growth of Si Thin Films Preapared by PECVD (PECVD 방법으로 증착한 Si박막의 SPC 성장)

  • 문대규;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.42-45
    • /
    • 1992
  • The poly silicon thin films were prepared by solid phase crystallization at 600$^{\circ}C$ of amorphous silicon films deposited on Corning 7059 glass and (100) silicon wafer with thermally grown SiO$_2$substrate by plasma enhanced chemical vapor deposition with varying rf power, deposition temperature, total flow rate. Crystallization time, microstructure, absorption coefficients were investigated by RAMAN, XRD analysis and UV transmittance measurement. Crystallization time of amorphous silicon films was increased with increasing rf power, decreasing deposition temperature and decreasing total flow rate.

  • PDF

Influence of crystallization treatment on structure, magnetic properties and magnetocaloric effect of Gd71Ni29 melt-spun ribbons

  • Zhong, X.C.;Yu, H.Y.;Liu, Z.W.;Ramanujan, R.V.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1289-1293
    • /
    • 2018
  • The influence of crystallization treatment on the structure, magnetic properties and magnetocaloric effect of $Gd_{71}Ni_{29}$ melt-spun ribbons has been investigated in detail. Annealing of the melt-spun samples at 610 K for 30 min, a majority phase with a $Fe_3C$-type orthorhombic structure (space group, Pnma) and a minority phase with a CrB-type orthorhombic structure (space group, Cmcm) were obtained in the amorphous matrix. The amorphous melt-spun ribbons undergo a second-order ferromagnetic to paramagnetic phase transition at 122 K. For the annealed samples, two magnetic phase transitions caused by amorphous matrix and $Gd_3Ni$ phases occur at 82 and 100 K, respectively. The maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ is $9.0J/(kg{\cdot}K)$ (5T) at 122 K for the melt-spun ribbons. The values of $(-{\Delta}S_M)^{max}$ in annealed ribbons are 1.0 and $5.7J/(kg{\cdot}K)$, corresponding to the two adjacent magnetic transitions.

Formation of Icosahedral Phase in Bulk Glass Forming Ti-Zr-Be-Cu-Ni Alloy

  • Park, Jin Man;Lee, Jun Hyeok;Jo, Mi Seon;Lee, Jin Kyu
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.58-62
    • /
    • 2015
  • Formation of an icosahedral phase in the bulk glass forming $Ti_{40}Zr_{29}Be_{14}Cu_9Ni_8$ alloy during crystallization from amorphous phase and solidification from melt is investigated. The icosahedral phase with a size of 10 to 15 nm forms as a thermodynamically stable phase at intermediate temperature during the transformation from amorphous to crystalline phases such as Laves and ${\beta}$-(Ti-Zr) phases, indicating that the existence of the icosahedral cluster in the undercooled liquid. On the other hand, the icosahedral phase forms as a primary solidification phase even though the Laves phase is stable at high temperature, which is can be explained based on the high nucleation rate of icosahedral phase relative to that of competing crystalline Laves phase due to lower interfacial energy between icosahedral and liquid phases.

Behavior of Solid Phase Crystallization of Amorphous Silicon Films at High Temperatures according to Raman Spectroscopy (라만 분석을 통한 비정질 실리콘 박막의 고온 고상 결정화 거동)

  • Hong, Won-Eui;Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Solid phase crystallization (SPC) is a simple method in producing a polycrystalline phase by annealing amorphous silicon (a-Si) in a furnace environment. Main motivation of the crystallization technique is to fabricate low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) on a thermally susceptible glass substrate. Studies on SPC have been naturally focused to the low temperature regime. Recently, fabrication of polycrystalline silicon (poly-Si) TFT circuits from a high temperature polycrystalline silicon process on steel foil substrates was reported. Solid phase crystallization of a-Si films proceeds by nucleation and growth. After nucleation polycrystalline phase is propagated via twin mediated growth mechanism. Elliptically shaped grains, therefore, contain intra-granular defects such as micro-twins. Both the intra-granular and the inter-granular defects reflect the crystallinity of SPC poly-Si. Crystallinity and SPC kinetics of high temperatures were compared to those of low temperatures using Raman analysis newly proposed in this study.