DOI QR코드

DOI QR Code

Influence of crystallization treatment on structure, magnetic properties and magnetocaloric effect of Gd71Ni29 melt-spun ribbons

  • Zhong, X.C. (School of Materials Science and Engineering, South China University of Technology) ;
  • Yu, H.Y. (School of Materials Science and Engineering, South China University of Technology) ;
  • Liu, Z.W. (School of Materials Science and Engineering, South China University of Technology) ;
  • Ramanujan, R.V. (School of Materials Science and Engineering, Nanyang Technological University)
  • Received : 2018.05.22
  • Accepted : 2018.07.09
  • Published : 2018.11.30

Abstract

The influence of crystallization treatment on the structure, magnetic properties and magnetocaloric effect of $Gd_{71}Ni_{29}$ melt-spun ribbons has been investigated in detail. Annealing of the melt-spun samples at 610 K for 30 min, a majority phase with a $Fe_3C$-type orthorhombic structure (space group, Pnma) and a minority phase with a CrB-type orthorhombic structure (space group, Cmcm) were obtained in the amorphous matrix. The amorphous melt-spun ribbons undergo a second-order ferromagnetic to paramagnetic phase transition at 122 K. For the annealed samples, two magnetic phase transitions caused by amorphous matrix and $Gd_3Ni$ phases occur at 82 and 100 K, respectively. The maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ is $9.0J/(kg{\cdot}K)$ (5T) at 122 K for the melt-spun ribbons. The values of $(-{\Delta}S_M)^{max}$ in annealed ribbons are 1.0 and $5.7J/(kg{\cdot}K)$, corresponding to the two adjacent magnetic transitions.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of Guangdong Province, Central Universities, China Scholarship Council

References

  1. K.A. Gschneidner Jr., V.K. Pecharsky, Thirty years of near room temperature magnetic cooling: what we are today and future prospects, Int. J. Refrig. 31 (6) (2008) 945. https://doi.org/10.1016/j.ijrefrig.2008.01.004
  2. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient, Adv. Mater. 23 (7) (2011) 821. https://doi.org/10.1002/adma.201002180
  3. V. Franco, J.S. Blazquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramirez, A. Conde, Magnetocaloric effect: from materials research to refrigeration devices, Prog. Mater. Sci. 93 (2018) 112. https://doi.org/10.1016/j.pmatsci.2017.10.005
  4. F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound $LaFe_{11.4}Si_{1.6}$, Appl. Phys. Lett. 78 (2001) 3675. https://doi.org/10.1063/1.1375836
  5. S.J. Kim, K.J. Lee, M.H. Jung, H.J. Oh, Y.S. Kwon, Magnetocaloric effect in La $(Fe_{0.89}Si_{0.11})_{13}$ irradiated by protons, J. Magn. Magn. Mater. 323 (2011) 1094. https://doi.org/10.1016/j.jmmm.2010.12.020
  6. V.K. Pecharsky, K.A. Gschneidner Jr., Giant magnetocaloric effect in $Gd_5(Si_2Ge_2)$, Phys. Rev. Lett. 78 (1997) 4494. https://doi.org/10.1103/PhysRevLett.78.4494
  7. O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature 415 (2002) 150. https://doi.org/10.1038/415150a
  8. H. Wada, Y. Tanabe, Giant magnetocaloric effect of $MnAs_{1-x}Sb_x$, Appl. Phys. Lett. 79 (2001) 3302. https://doi.org/10.1063/1.1419048
  9. L.G. de Medeiros Jr., N.A. de Oliveira, A. Troper, Giant magnetocaloric and barocaloric effects in $Mn(As_{1−x}Sb_x)$, J. Alloys Compd. 501 (2010) 177. https://doi.org/10.1016/j.jallcom.2010.03.244
  10. S.C. Ma, Q.Q. Cao, H.C. Xuan, C.L. Zhang, L.J. Shen, D.H. Wang, Y.W. Du, Magnetic and magnetocaloric properties in melt-spun and annealed $Ni_{42.7}Mn_{40.8}Co_{5.2}Sn_{11.3}$ ribbons, J. Alloys Compd. 509 (2011) 1111. https://doi.org/10.1016/j.jallcom.2010.09.205
  11. I. Dubenko, T. Samanta, A. KumarPathak, A. Kazakov, V. Prudnikov, S. Stadler, A. Granovsky, A. Zhukov, N. Ali, Magnetocaloric effect and multifunctional properties of Ni-Mn-based Heusler alloys, J. Magn. Magn. Mater. 324 (2012) 3530. https://doi.org/10.1016/j.jmmm.2012.02.082
  12. J.I. Perez-Landazabal, V. Recarte, V. Sanchez-Alarcos, J.J. Beato-Lopez, J.A. Rodriguez-Velamazan, J. Sanchez-Marcos, C. Gomez-Polo, E. Cesari, Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation, Sci. Rep. 7 (2017) 13328. https://doi.org/10.1038/s41598-017-13856-5
  13. R. Caballero-Flores, V. Franco, A. Conde, K.E. Knipling, M.A. Willard, Influence of Co and Ni addition on the magnetocaloric effect in $Fe_{88−2x}Co_xNi_xZr_7B_4Cu_1$ soft magnetic amorphous alloys, Appl. Phys. Lett. 96 (2010) 182506. https://doi.org/10.1063/1.3427439
  14. X.C. Zhong, X.W. Wang, X.Y. Shen, H.Y. Mo, Z.W. Liu, Thermal stability, magnetic properties and large refrigerant capacity of ternary $Gd_{55}Co_{35}M_{10}$ (M=Mn, Fe and Ni) amorphous alloys, J. Alloys Compd. 682 (2016) 476. https://doi.org/10.1016/j.jallcom.2016.04.307
  15. J.X. Min, X.C. Zhong, Z.W. Liu, Z.G. Zheng, D.C. Zeng, Magnetic properties and magnetocaloric effects of Gd-Mn-Si ribbons in amorphous and crystalline states, J. Alloys Compd. 606 (2014) 50. https://doi.org/10.1016/j.jallcom.2014.04.014
  16. Y.F. Ma, B.Z. Tang, L. Xia, D. Ding, Outstanding magneto-caloric effect of a $Gd_{60}Ni_{37}Co_3$ amorphous alloy, Chin. Phys. Lett. 33 (12) (2016) 126101. https://doi.org/10.1088/0256-307X/33/12/126101
  17. X.G. Zhao, J.H. Lai, C.C. Hsieh, Y.K. Fang, W.C. Chang, Z.D. Zhang, The influence of Si addition on the glass forming ability, magnetic and magnetocaloric properties of the Gd-Fe-Al glassy ribbons, J. Appl. Phys. 109 (2011) 07A911. https://doi.org/10.1063/1.3540666
  18. X.C. Zhong, P.F. Tang, B.B. Gao, J.X. Min, Z.W. Liu, Z.G. Zheng, D.C. Zeng, H.Y. Yu, W.Q. Qiu, Magnetic properties and magnetocaloric effects in amorphous and crystalline $Gd_{55}Co_{35}Ni_{10}$ ribbons, Sci. China Phys. Mech. Astron. 56 (6) (2013) 1096. https://doi.org/10.1007/s11433-013-5082-9
  19. Q. Luo, W.H. Wang, Magnetocaloric effect in rare earth-based bulk metallic glasses, J. Alloys Compd. 495 (2010) 209. https://doi.org/10.1016/j.jallcom.2010.01.125
  20. X.C. Zhong, H.Y. Mo, X.W. Huang, X.Y. Shen, X.L. Feng, D.L. Jiao, Z.W. Liu, Effects of crystallization treatment on the structure and magnetic properties of $Gd_{65}Fe_{25}Zn_{10}$ alloy ribbons for magnetic refrigeration, J. Alloys Compd. 730 (2018) 493. https://doi.org/10.1016/j.jallcom.2017.09.321
  21. X.C. Zhong, J.X. Min, Z.G. Zheng, Z.W. Liu, D.C. Zeng, Critical behavior and magnetocaloric effect of $Gd_{65}Mn_{35-x}Ge_x$ (x=0, 5, and 10) melt-spun ribbons, J. Appl. Phys. 112 (2012) 033903. https://doi.org/10.1063/1.4740062
  22. Y.Y. Pan, C.S. Cheng, M. Li, H. Yang, A phase diagram of the alloys of Gd-Ni binary system, Acta Phys. Sin. 35 (5) (1986) 667 (In Chinese).
  23. Y.Y. Pan, P. Nash, P. Nash (Ed.), Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, OH, 1991, p. 140.
  24. S.K. Tripathy, K.G. Suresh, A.K. Nigam, A comparative study of the magnetocaloric effect in $Gd_3Co$ and $Gd_3Ni$, J. Magn. Magn. Mater. 306 (2006) 24. https://doi.org/10.1016/j.jmmm.2006.02.253
  25. A. Provino, V. Smetana, D. Paudyal, K.A. Gschneidner Jr., A.V. Mudring, V.K. Pecharsky, P. Manfrinetti, M. Putti, $Gd_3Ni_2$ and $Gd_3Co_xNi_{2-x}$: magnetism and unexpected Co/Ni crystallographic ordering, J. Mater. Chem. C 4 (2016) 6078. https://doi.org/10.1039/C6TC01035K
  26. X.C. Zhong, P.F. Tang, Z.W. Liu, D.C. Zeng, Z.G. Zheng, H.Y. Yu, W.Q. Qiu, M. Zou, Magnetic properties and large magnetocaloric effect in Gd-Ni amorphous ribbons for magnetic refrigeration applications in intermediate temperature range, J. Alloys Compd. 509 (2011) 6889. https://doi.org/10.1016/j.jallcom.2011.03.173
  27. C.C. Hays, C.P. Kim, W.L. Johnson, Large supercooled liquid region and phase separation in the Zr-Ti-Ni-Cu-Be bulk metallic glasses, Appl. Phys. Lett. 75 (1999) 1089. https://doi.org/10.1063/1.124606
  28. D. Chen, A. Takeuchi, A. Inoue, Thermal stability and magnetic properties of Gd-Fe-Al bulk amorphous alloys, J. Alloys Compd. 440 (2007) 199. https://doi.org/10.1016/j.jallcom.2006.09.064
  29. S. Sasaki, K. Hashimoto, R. Kobayashi, K. Itoh, S. Iguchi, Y. Nishio, Y. Ikemoto, T. Moriwaki, N. Yoneyama, M. Watanabe, A. Ueda, H. Mori, K. Kobayashi, R. Kumai, Y. Murakami, J. Muller, T. Sasaki, Crystallization and vitrification of electrons in a glass-forming charge liquid, Science 357 (6358) (2017) 1381. https://doi.org/10.1126/science.aal3120
  30. M. Copeland, G. Kato, J.F. Nachman, C.E. Lundin (Eds.), Rare Earth Research, Plenum Press, New York, 1961, p. 133.
  31. V.F. Novy, R.C. Vickery, E.V. Kleber, The gadolinium-nickel system, Trans. Metall. Soc. AIME 221 (1961) 585.
  32. Y.H. Zhuang, R.H. Ding, J.Q. Li, X.B. Ou, H.X. Deng, The isothermal section of the Gd-Mn-Ni ternary system at 803 K, J. Alloys Compd. 346 (2002) 181. https://doi.org/10.1016/S0925-8388(02)00505-4
  33. Y. Zhong, H. Zhou, Q. Yao, C. Tang, R.P. Zou, The isothermal section of the Gd-Ni-V ternary system at 773K, J. Alloys Compd. 470 (2009) 199. https://doi.org/10.1016/j.jallcom.2008.03.002
  34. Z. Rahou, K. Mahdouk, Thermodynamic reassessment of Gd-Ni system, J. Alloys Compd. 648 (2015) 346. https://doi.org/10.1016/j.jallcom.2015.06.201
  35. P. Kumar, K.G. Suresh, A.K. Nigam, O. Gutfleisch, Large reversible magnetocaloric effect in RNi compounds, J. Phys. D Appl. Phys. 41 (2008) 245006. https://doi.org/10.1088/0022-3727/41/24/245006
  36. R. Mallik, P.L. Paulose, E.V. Sampathkumaran, S. Patil, V. Nagarajan, Coexistence of localized and induced itinerant magnetism and heat-capacity anomalies in $Gd_{1-x}Y_xNi$ alloys, Phys. Rev. B 55 (13) (1997) 8369. https://doi.org/10.1103/PhysRevB.55.8369
  37. E. Gratz, A. Lindbaum, Anomalous thermal expansion in Gd-based intermetallics, J. Magn. Magn. Mater. 177-181 (1998) 1077. https://doi.org/10.1016/S0304-8853(97)00276-X
  38. X.Y. Shen, X.C. Zhong, X.W. Huang, H.Y. Mo, X.L. Feng, Z.W. Liu, D.L. Jiao, Achieving a table-like magnetocaloric effect and large refrigerant capacity in in situ multiphase $Gd_{65}Mn_{25}Si_{10}$ alloys obtained by crystallization treatment, J. Phys. D Appl. Phys. 50 (2017) 035005. https://doi.org/10.1088/1361-6463/50/3/035005
  39. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions, Phys. Lett. 12 (1964) 16.
  40. Q. Zhang, X.G. Liu, F. Yang, W.J. Feng, X.G. Zhao, D.J. Kang, Z.D. Zhang, Large reversible magnetocaloric effect in $Dy_2In$, J. Phys. D Appl. Phys. 42 (2009) 055011. https://doi.org/10.1088/0022-3727/42/5/055011
  41. L. Xia, K.C. Chan, M.B. Tang, Y.D. Dong, Achieving a large adiabatic temperature rise of $Gd-{55}Co-{25}Al_{20}$ bulk metallic glass by minor Zn addition, J. Mater. Sci. 50 (2015) 1333. https://doi.org/10.1007/s10853-014-8693-2
  42. X.X. Zhang, F.W. Wang, G.H. Wen, Magnetic entropy change in RCoAl (R = Gd, Tb, Dy, and Ho) compounds: candidate materials for providing magnetic refrigeration in the temperature range 10 K to 100 K, J. Phys. Condens. Matter 13 (2001) L747. https://doi.org/10.1088/0953-8984/13/31/102
  43. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Pecharsky, C.B. Zimm, Recent developments in magnetic refrigeration, Mater. Sci. Forum. 315-317 (1999) 69. https://doi.org/10.4028/www.scientific.net/MSF.315-317.69
  44. S. Lu, M.B. Tang, L. Xia, Excellent magnetocaloric effect of a $Gd_{55}Al_{20}Co_{25}$ bulk metallic glass, Physica B 406 (2011) 3398. https://doi.org/10.1016/j.physb.2011.06.006
  45. F.W. Wang, X.X. Zhang, F.X. Hu, Large magnetic entropy change in $TbAl_2$ and $Tb_{0.4}Gd_{0.6}Al_2$, Appl. Phys. Lett. 77 (9) (2000) 1360. https://doi.org/10.1063/1.1290389
  46. M. Ballia, D. Frucharta, D. Gignoux, A study of magnetism and magnetocaloric effect in $Ho_{1-x}Tb_xCo_2$ compounds, J. Magn. Magn. Mater. 314 (2007) 16. https://doi.org/10.1016/j.jmmm.2007.02.007