Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.007

Influence of crystallization treatment on structure, magnetic properties and magnetocaloric effect of Gd71Ni29 melt-spun ribbons  

Zhong, X.C. (School of Materials Science and Engineering, South China University of Technology)
Yu, H.Y. (School of Materials Science and Engineering, South China University of Technology)
Liu, Z.W. (School of Materials Science and Engineering, South China University of Technology)
Ramanujan, R.V. (School of Materials Science and Engineering, Nanyang Technological University)
Abstract
The influence of crystallization treatment on the structure, magnetic properties and magnetocaloric effect of $Gd_{71}Ni_{29}$ melt-spun ribbons has been investigated in detail. Annealing of the melt-spun samples at 610 K for 30 min, a majority phase with a $Fe_3C$-type orthorhombic structure (space group, Pnma) and a minority phase with a CrB-type orthorhombic structure (space group, Cmcm) were obtained in the amorphous matrix. The amorphous melt-spun ribbons undergo a second-order ferromagnetic to paramagnetic phase transition at 122 K. For the annealed samples, two magnetic phase transitions caused by amorphous matrix and $Gd_3Ni$ phases occur at 82 and 100 K, respectively. The maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ is $9.0J/(kg{\cdot}K)$ (5T) at 122 K for the melt-spun ribbons. The values of $(-{\Delta}S_M)^{max}$ in annealed ribbons are 1.0 and $5.7J/(kg{\cdot}K)$, corresponding to the two adjacent magnetic transitions.
Keywords
$Gd_{71}Ni_{29}$ ribbon; Crystallization treatment; Magnetic properties; Magnetocaloric effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Dubenko, T. Samanta, A. KumarPathak, A. Kazakov, V. Prudnikov, S. Stadler, A. Granovsky, A. Zhukov, N. Ali, Magnetocaloric effect and multifunctional properties of Ni-Mn-based Heusler alloys, J. Magn. Magn. Mater. 324 (2012) 3530.   DOI
2 J.I. Perez-Landazabal, V. Recarte, V. Sanchez-Alarcos, J.J. Beato-Lopez, J.A. Rodriguez-Velamazan, J. Sanchez-Marcos, C. Gomez-Polo, E. Cesari, Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation, Sci. Rep. 7 (2017) 13328.   DOI
3 R. Caballero-Flores, V. Franco, A. Conde, K.E. Knipling, M.A. Willard, Influence of Co and Ni addition on the magnetocaloric effect in $Fe_{88−2x}Co_xNi_xZr_7B_4Cu_1$ soft magnetic amorphous alloys, Appl. Phys. Lett. 96 (2010) 182506.   DOI
4 X.C. Zhong, X.W. Wang, X.Y. Shen, H.Y. Mo, Z.W. Liu, Thermal stability, magnetic properties and large refrigerant capacity of ternary $Gd_{55}Co_{35}M_{10}$ (M=Mn, Fe and Ni) amorphous alloys, J. Alloys Compd. 682 (2016) 476.   DOI
5 J.X. Min, X.C. Zhong, Z.W. Liu, Z.G. Zheng, D.C. Zeng, Magnetic properties and magnetocaloric effects of Gd-Mn-Si ribbons in amorphous and crystalline states, J. Alloys Compd. 606 (2014) 50.   DOI
6 Y.F. Ma, B.Z. Tang, L. Xia, D. Ding, Outstanding magneto-caloric effect of a $Gd_{60}Ni_{37}Co_3$ amorphous alloy, Chin. Phys. Lett. 33 (12) (2016) 126101.   DOI
7 X.G. Zhao, J.H. Lai, C.C. Hsieh, Y.K. Fang, W.C. Chang, Z.D. Zhang, The influence of Si addition on the glass forming ability, magnetic and magnetocaloric properties of the Gd-Fe-Al glassy ribbons, J. Appl. Phys. 109 (2011) 07A911.   DOI
8 S.C. Ma, Q.Q. Cao, H.C. Xuan, C.L. Zhang, L.J. Shen, D.H. Wang, Y.W. Du, Magnetic and magnetocaloric properties in melt-spun and annealed $Ni_{42.7}Mn_{40.8}Co_{5.2}Sn_{11.3}$ ribbons, J. Alloys Compd. 509 (2011) 1111.   DOI
9 Q. Luo, W.H. Wang, Magnetocaloric effect in rare earth-based bulk metallic glasses, J. Alloys Compd. 495 (2010) 209.   DOI
10 X.C. Zhong, P.F. Tang, B.B. Gao, J.X. Min, Z.W. Liu, Z.G. Zheng, D.C. Zeng, H.Y. Yu, W.Q. Qiu, Magnetic properties and magnetocaloric effects in amorphous and crystalline $Gd_{55}Co_{35}Ni_{10}$ ribbons, Sci. China Phys. Mech. Astron. 56 (6) (2013) 1096.   DOI
11 X.C. Zhong, H.Y. Mo, X.W. Huang, X.Y. Shen, X.L. Feng, D.L. Jiao, Z.W. Liu, Effects of crystallization treatment on the structure and magnetic properties of $Gd_{65}Fe_{25}Zn_{10}$ alloy ribbons for magnetic refrigeration, J. Alloys Compd. 730 (2018) 493.   DOI
12 S.K. Tripathy, K.G. Suresh, A.K. Nigam, A comparative study of the magnetocaloric effect in $Gd_3Co$ and $Gd_3Ni$, J. Magn. Magn. Mater. 306 (2006) 24.   DOI
13 X.C. Zhong, J.X. Min, Z.G. Zheng, Z.W. Liu, D.C. Zeng, Critical behavior and magnetocaloric effect of $Gd_{65}Mn_{35-x}Ge_x$ (x=0, 5, and 10) melt-spun ribbons, J. Appl. Phys. 112 (2012) 033903.   DOI
14 Y.Y. Pan, C.S. Cheng, M. Li, H. Yang, A phase diagram of the alloys of Gd-Ni binary system, Acta Phys. Sin. 35 (5) (1986) 667 (In Chinese).
15 Y.Y. Pan, P. Nash, P. Nash (Ed.), Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, OH, 1991, p. 140.
16 A. Provino, V. Smetana, D. Paudyal, K.A. Gschneidner Jr., A.V. Mudring, V.K. Pecharsky, P. Manfrinetti, M. Putti, $Gd_3Ni_2$ and $Gd_3Co_xNi_{2-x}$: magnetism and unexpected Co/Ni crystallographic ordering, J. Mater. Chem. C 4 (2016) 6078.   DOI
17 S. Sasaki, K. Hashimoto, R. Kobayashi, K. Itoh, S. Iguchi, Y. Nishio, Y. Ikemoto, T. Moriwaki, N. Yoneyama, M. Watanabe, A. Ueda, H. Mori, K. Kobayashi, R. Kumai, Y. Murakami, J. Muller, T. Sasaki, Crystallization and vitrification of electrons in a glass-forming charge liquid, Science 357 (6358) (2017) 1381.   DOI
18 X.C. Zhong, P.F. Tang, Z.W. Liu, D.C. Zeng, Z.G. Zheng, H.Y. Yu, W.Q. Qiu, M. Zou, Magnetic properties and large magnetocaloric effect in Gd-Ni amorphous ribbons for magnetic refrigeration applications in intermediate temperature range, J. Alloys Compd. 509 (2011) 6889.   DOI
19 C.C. Hays, C.P. Kim, W.L. Johnson, Large supercooled liquid region and phase separation in the Zr-Ti-Ni-Cu-Be bulk metallic glasses, Appl. Phys. Lett. 75 (1999) 1089.   DOI
20 D. Chen, A. Takeuchi, A. Inoue, Thermal stability and magnetic properties of Gd-Fe-Al bulk amorphous alloys, J. Alloys Compd. 440 (2007) 199.   DOI
21 M. Copeland, G. Kato, J.F. Nachman, C.E. Lundin (Eds.), Rare Earth Research, Plenum Press, New York, 1961, p. 133.
22 V.F. Novy, R.C. Vickery, E.V. Kleber, The gadolinium-nickel system, Trans. Metall. Soc. AIME 221 (1961) 585.
23 Y.H. Zhuang, R.H. Ding, J.Q. Li, X.B. Ou, H.X. Deng, The isothermal section of the Gd-Mn-Ni ternary system at 803 K, J. Alloys Compd. 346 (2002) 181.   DOI
24 Y. Zhong, H. Zhou, Q. Yao, C. Tang, R.P. Zou, The isothermal section of the Gd-Ni-V ternary system at 773K, J. Alloys Compd. 470 (2009) 199.   DOI
25 Z. Rahou, K. Mahdouk, Thermodynamic reassessment of Gd-Ni system, J. Alloys Compd. 648 (2015) 346.   DOI
26 P. Kumar, K.G. Suresh, A.K. Nigam, O. Gutfleisch, Large reversible magnetocaloric effect in RNi compounds, J. Phys. D Appl. Phys. 41 (2008) 245006.   DOI
27 B.K. Banerjee, On a generalised approach to first and second order magnetic transitions, Phys. Lett. 12 (1964) 16.
28 R. Mallik, P.L. Paulose, E.V. Sampathkumaran, S. Patil, V. Nagarajan, Coexistence of localized and induced itinerant magnetism and heat-capacity anomalies in $Gd_{1-x}Y_xNi$ alloys, Phys. Rev. B 55 (13) (1997) 8369.   DOI
29 E. Gratz, A. Lindbaum, Anomalous thermal expansion in Gd-based intermetallics, J. Magn. Magn. Mater. 177-181 (1998) 1077.   DOI
30 X.Y. Shen, X.C. Zhong, X.W. Huang, H.Y. Mo, X.L. Feng, Z.W. Liu, D.L. Jiao, Achieving a table-like magnetocaloric effect and large refrigerant capacity in in situ multiphase $Gd_{65}Mn_{25}Si_{10}$ alloys obtained by crystallization treatment, J. Phys. D Appl. Phys. 50 (2017) 035005.   DOI
31 Q. Zhang, X.G. Liu, F. Yang, W.J. Feng, X.G. Zhao, D.J. Kang, Z.D. Zhang, Large reversible magnetocaloric effect in $Dy_2In$, J. Phys. D Appl. Phys. 42 (2009) 055011.   DOI
32 L. Xia, K.C. Chan, M.B. Tang, Y.D. Dong, Achieving a large adiabatic temperature rise of $Gd-{55}Co-{25}Al_{20}$ bulk metallic glass by minor Zn addition, J. Mater. Sci. 50 (2015) 1333.   DOI
33 X.X. Zhang, F.W. Wang, G.H. Wen, Magnetic entropy change in RCoAl (R = Gd, Tb, Dy, and Ho) compounds: candidate materials for providing magnetic refrigeration in the temperature range 10 K to 100 K, J. Phys. Condens. Matter 13 (2001) L747.   DOI
34 K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Pecharsky, C.B. Zimm, Recent developments in magnetic refrigeration, Mater. Sci. Forum. 315-317 (1999) 69.   DOI
35 S. Lu, M.B. Tang, L. Xia, Excellent magnetocaloric effect of a $Gd_{55}Al_{20}Co_{25}$ bulk metallic glass, Physica B 406 (2011) 3398.   DOI
36 V. Franco, J.S. Blazquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramirez, A. Conde, Magnetocaloric effect: from materials research to refrigeration devices, Prog. Mater. Sci. 93 (2018) 112.   DOI
37 M. Ballia, D. Frucharta, D. Gignoux, A study of magnetism and magnetocaloric effect in $Ho_{1-x}Tb_xCo_2$ compounds, J. Magn. Magn. Mater. 314 (2007) 16.   DOI
38 F.W. Wang, X.X. Zhang, F.X. Hu, Large magnetic entropy change in $TbAl_2$ and $Tb_{0.4}Gd_{0.6}Al_2$, Appl. Phys. Lett. 77 (9) (2000) 1360.   DOI
39 K.A. Gschneidner Jr., V.K. Pecharsky, Thirty years of near room temperature magnetic cooling: what we are today and future prospects, Int. J. Refrig. 31 (6) (2008) 945.   DOI
40 O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient, Adv. Mater. 23 (7) (2011) 821.   DOI
41 F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound $LaFe_{11.4}Si_{1.6}$, Appl. Phys. Lett. 78 (2001) 3675.   DOI
42 S.J. Kim, K.J. Lee, M.H. Jung, H.J. Oh, Y.S. Kwon, Magnetocaloric effect in La $(Fe_{0.89}Si_{0.11})_{13}$ irradiated by protons, J. Magn. Magn. Mater. 323 (2011) 1094.   DOI
43 V.K. Pecharsky, K.A. Gschneidner Jr., Giant magnetocaloric effect in $Gd_5(Si_2Ge_2)$, Phys. Rev. Lett. 78 (1997) 4494.   DOI
44 L.G. de Medeiros Jr., N.A. de Oliveira, A. Troper, Giant magnetocaloric and barocaloric effects in $Mn(As_{1−x}Sb_x)$, J. Alloys Compd. 501 (2010) 177.   DOI
45 O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature 415 (2002) 150.   DOI
46 H. Wada, Y. Tanabe, Giant magnetocaloric effect of $MnAs_{1-x}Sb_x$, Appl. Phys. Lett. 79 (2001) 3302.   DOI