• Title/Summary/Keyword: Convex mapping

Search Result 134, Processing Time 0.024 seconds

APPROXIMATING COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Cho, Yeol-Je;Kang, Jung-Im;Zrou, Haiyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.661-670
    • /
    • 2005
  • In this paper, we deal with approximations of com­mon fixed points of the iterative sequences with errors for three asymptotically nonexpansive mappings in a uniformly convex Banach space. Our results generalize and improve the corresponding results of Khan and Takahashi, Schu, Takahashi and Tamura, and others.

A NOTE ON CONVEXITY OF CONVOLUTIONS OF HARMONIC MAPPINGS

  • JIANG, YUE-PING;RASILA, ANTTI;SUN, YONG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1925-1935
    • /
    • 2015
  • In this paper, we study right half-plane harmonic mappings $f_0$ and f, where $f_0$ is fIxed and f is such that its dilatation of a conformal automorphism of the unit disk. We obtain a sufficient condition for the convolution of such mappings to be convex in the direction of the real axis. The result of the paper is a generalization of the result of by Li and Ponnusamy [11], which itself originates from a problem posed by Dorff et al. in [7].

ON GENERALIZED (𝛼, 𝛽)-NONEXPANSIVE MAPPINGS IN BANACH SPACES WITH APPLICATIONS

  • Akutsah, F.;Narain, O.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.663-684
    • /
    • 2021
  • In this paper, we present some fixed point results for a general class of nonexpansive mappings in the framework of Banach space and also proposed a new iterative scheme for approximating the fixed point of this class of mappings in the frame work of uniformly convex Banach spaces. Furthermore, we establish some basic properties and convergence results for our new class of mappings in uniformly convex Banach spaces. Finally, we present an application to nonlinear integral equation and also, a numerical example to illustrate our main result and then display the efficiency of the proposed algorithm compared to different iterative algorithms in the literature with different choices of parameters and initial guesses. The results obtained in this paper improve, extend and unify some related results in the literature.

STRONG CONVERGENCE THEOREMS FOR NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY-MONOTONE MAPPINGS IN A BANACH SPACE

  • Liu, Ying
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.627-639
    • /
    • 2010
  • In this paper, we introduce a new iterative sequence finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping in a Banach space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly-monotone mapping, the fixed point problem and the classical variational inequality problem. Our results improve and extend the corresponding results announced by many others.

WEAK CONVERGENCE TO COMMON FIXED POINTS OF COUNTABLE NONEXPANSIVE MAPPINGS AND ITS APPLICATIONS

  • Kimura, Yasunori;Takahashi, Wataru
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1275-1284
    • /
    • 2001
  • In this paper, we introduce an iteration generated by countable nonexpansive mappings and prove a weak convergence theorem which is connected with the feasibility problem. This result is used to solve the problem of finding a solution of the countable convex inequality system and the problem of finding a common fixed point for a commuting countable family of nonexpansive mappings.

  • PDF

GEOMETRIC SIMPLICIAL EMBEDDINGS OF ARC-TYPE GRAPHS

  • Parlier, Hugo;Weber, Ashley
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1103-1118
    • /
    • 2020
  • In this paper, we investigate a family of graphs associated to collections of arcs on surfaces. These multiarc graphs naturally interpolate between arc graphs and flip graphs, both well studied objects in low dimensional geometry and topology. We show a number of rigidity results, namely showing that, under certain complexity conditions, that simplicial maps between them only arise in the "obvious way". We also observe that, again under necessary complexity conditions, subsurface strata are convex. Put together, these results imply that certain simplicial maps always give rise to convex images.

COMMENTS ON GENERALIZED R-KKM TYPE THEOREMS

  • Park, Se-Hie
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.303-311
    • /
    • 2010
  • Recently, some authors [3, 4, 11, 12, 15] adopted the concept of the so-called generalized R-KKM maps which are used to rewrite known results in the KKM theory. In the present paper, we show that those maps are simply KKM maps on G-convex spaces. Consequently, results on generalized R-KKM maps follow the corresponding previous ones on G-convex spaces.

MICHAEL'S SELECTION THEORIES AND THEIR APPLICATIONS

  • CHO, MYUNG HYUN
    • Honam Mathematical Journal
    • /
    • v.20 no.1
    • /
    • pp.135-145
    • /
    • 1998
  • In this paper, we focus on the convex-valued selection theorem out of four main selection theorems; zero-dimensional, convex-valued, compact-valued, finite-dimensional theorems based on Michael's papers. We prove some theorems about lower semi-continuous set-valued mappings, and derive some applications to closed continuous set-valued mappings and to functional analysis. We also give a partial solution to the open problem posed by Engelking, Heath, and Michael.

  • PDF