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A NOTE ON CONVEXITY OF CONVOLUTIONS OF

HARMONIC MAPPINGS

Yue-Ping Jiang, Antti Rasila, and Yong Sun

Abstract. In this paper, we study right half-plane harmonic mappings

f0 and f , where f0 is fixed and f is such that its dilatation of a conformal
automorphism of the unit disk. We obtain a sufficient condition for the

convolution of such mappings to be convex in the direction of the real
axis. The result of the paper is a generalization of the result of by Li and

Ponnusamy [11], which itself originates from a problem posed by Dorff et

al. in [7].

1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk. We will consider the family of
complex-valued harmonic mapping f = u + iv defined in a domain D ⊂ C if
u and v are real harmonic in D, i.e., ∆u = ∆v = 0, where ∆ is the complex
Laplacian operator

∆ = 4
∂2

∂z∂z
:=

∂2

∂x2
+

∂2

∂y2
.

Denote by H the class of all complex-valued harmonic mappings f in D nor-
malized by f(0) = fz(0) − 1 = 0. Let SH be the subclass of H consisting of
univalent and sense-preserving functions. For a simply connected domain D,
such functions can be written in the form f = h+ g, where

(1) h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n

are analytic (cf. [8]) in D and the Jacobian Jf (z) = |h′(z)|2 − |g′(z)|2 > 0, or
equivalently there exists an analytic complex dilatation ω of f such that

(2) |ω(z)| =
∣∣∣∣ g′(z)h′(z)

∣∣∣∣ < 1

(
h′(z) 6= 0; z ∈ D

)
.

The classical family S of analytic univalent and normalized functions in D is
a subclass of SH with g(z) ≡ 0. The family of all functions f ∈ SH with the
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additional property that fz(0) = 0 is denoted by S0H . We let K0
H , S∗0H and

C0H denote the subclasses of S0H mapping D onto convex, starlike and close-to-
convex domains, respectively.

A domain Ω ⊂ C is said to be convex in the direction γ if for all a ∈ C, the
set Ω∩ {a+ teiγ : t ∈ R} is either connected or empty. In particular, a domain
is convex in the direction of the real (or imaginary) axis if every line parallel
to the real (or imaginary) axis has a connected intersection with the domain.

For two harmonic functions

f(z) = h(z) + g(z) = z +

∞∑
n=2

anz
n +

∞∑
n=1

bnz
n

and

F (z) = H(z) +G(z) = z +

∞∑
n=2

Anz
n +

∞∑
n=1

Bnz
n,

their harmonic convolution is denoted by f ∗ F and defined as follows:

f ∗ F = h ∗H + g ∗G = z +

∞∑
n=2

anAnz
n +

∞∑
n=1

bnBnz
n.

For recent investigations on harmonic convolution, see e.g. [1, 2, 4, 6, 7, 8, 9,
10, 11, 12], and references therein.

A function f = h+ g ∈ S0H is called a right half-plane mapping if f maps D
onto {w : <(w) > −1/2}. Such a mapping can be presented in the form

h(z) + g(z) =
z

1− z
(z ∈ D).

We denote by R0
H , the class of all half-plane mappings, and note that R0

H ⊆
K0
H . Specifically, for f0 = h0 +g0 ∈ R0

H with the dilatation ω0 = −z, by apply-
ing the shearing technique, we obtain the canonical right half-plane mapping
with

(3) h0 =
z − 1

2z
2

(1− z)2
=

1

2

(
z

1− z
+

z

(1− z)2

)
and

(4) g0 =
− 1

2z
2

(1− z)2
=

1

2

(
z

1− z
− z

(1− z)2

)
.

For the convolution of analytic functions, if f1, f2 ∈ K, then f1 ∗ f2 ∈ K.
Also, the right half-plane mapping, z/(1− z), acts as the convolution identity.
In the harmonic case, there are infinitely many right half-plane mappings and
the harmonic convolution of one of these right half-plane mappings with a
function f ∈ K0

H may not preserve the properties of f , such as convexity or
even univalence (cf. [6]).

However, the results below guarantee that the harmonic convolution of a
right half-plane mapping with another harmonic mapping with special dilata-
tion will at least be convex in the direction of the real axis.



A NOTE ON CONVEXITY OF CONVOLUTIONS OF HARMONIC MAPPINGS 1927

Theorem A ([6]). Let f1 = h1 + g1, f2 = h2 + g2 ∈ R0
H . If f1 ∗ f2 is locally

univalent and sense-preserving, then f1 ∗f2 ∈ S0H and is convex in the direction
of the real axis.

Theorem B ([7]). Let f = h+g ∈ R0
H with the dilatation ω(z) = eiθzn, where

n ∈ Z+ and θ ∈ R. If n = 1, 2, then f0 ∗ f ∈ S0H and is convex in the direction
of the real axis.

Theorem C ([7]). Let f = h+g ∈ R0
H with the dilatation ω(z) = z+a

1+az , where

a ∈ (−1, 1). Then f0 ∗ f ∈ S0H and is convex in the direction of the real axis.

Recently, Bshouty and Lyzzaik [3] presented a collection of problems and
conjectures in planar harmonic mappings. The problem 3.26(a) of Dorff et al.
[7] is given below.

Problem. Let f = h + g ∈ R0
H with the dilatation ω(z) = z+a

1+az , |a| < 1.
Determine other values of a ∈ D for which the result of Theorem C holds.

Recently, Li and Ponnusamy [11] have solved this problem. Their result is
the following.

Theorem D. Let f = h + g ∈ R0
H with the dilatation ω(z) = z+a

1+az , |a| < 1.

Then f0 ∗ f ∈ S0H and is convex in the direction of the real axis if and only if

(5)
(
<(a)

)2
+ 9
(
=(a)

)2 ≤ 1 and <(a) 6= ±1.

Furthermore, Li and Ponnusamy [12] have considered this result in a more
general setting by allowing f to be a slanted half-plane harmonic mapping.

In this paper, we consider the above problem in another more general setting,
where ω is allowed to be the conformal mapping of the unit disk onto itself of
the form

(6) ω(z) = eiθ
z + a

1 + az

(
θ ∈ R; |a| < 1

)
.

Our main result is Theorem 1, which gives a sufficient condition for the
mapping f0 ∗ f ∈ S0H and to be convex in the direction of the real axis with
this more general dilatation, thus improving Theorem B, Theorem C, and the
sufficiency part of Theorem D. Finally, we give an example illustrating potential
applications of our main result, and showing that our result does not follow
from Theorem D.

2. Preliminary results

The proofs of our main results are based on the following lemmas.

Lemma 1 ([6]). Let f = h + g ∈ R0
H with the dilatation ω(z). Then the

dilatation ω̃ of f0 ∗ f is

(7) ω̃(z) = −z
ω2(z) + ω(z)− 1

2zω
′(z) + 1

2ω
′(z)

1 + ω(z)− 1
2zω

′(z) + 1
2z

2ω′(z)
.
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Lemma 2. Let f = h + g ∈ R0
H with the dilatation ω(z) be defined by (6).

Then the dilatation ω̃ of f0 ∗ f is

(8) ω̃(z) = −zeiφ t(z)
t∗(z)

= −zeiφ (z +A)(z +B)(
1 +Az

)(
1 +Bz

) ,
where φ = arg

(
(a+ eiθ)/(a+ e−iθ)

)
,

(9) t(z) = z2 +
4aeiθ + 3 |a|2 + 1

2
(
a+ eiθ

) z +
2a2eiθ + 2a+ 1− |a|2

2
(
a+ eiθ

)
and

(10) t∗(z) = z2t(1/z̄) = 1 +
4ae−iθ + 3 |a|2 + 1

2
(
a+ e−iθ

) z+
2a2e−iθ + 2a+ 1− |a|2

2
(
a+ e−iθ

) z2.

Here −A, −B are the two roots of the equation t(z) = 0, and A, B may be
equal.

Proof. In view of (6), we have

ω′(z) = eiθ
1− |a|2

(1 + az)2
.

By Lemma 1 and (6), the expression for ω̃(z) given by (7) takes the form

ω̃(z) = −z
ω2(z) + ω(z)− 1

2zω
′(z) + 1

2ω
′(z)

1 + ω(z)− 1
2zω

′(z) + 1
2z

2ω′(z)
= −z

(
a+ eiθ

a+ e−iθ

)
t(z)

t∗(z)
.

Here t(z) and t∗(z) are given by (9) and (10), respectively. Suppose that
−A, −B are the two roots of t(z) = 0. Then

t(z) = (z +A)(z +B)

and

t∗(z) = z2t(1/z̄) = z2(1/z̄ +A)(1/z̄ +B) =
(
1 +Az

)(
1 +Bz

)
.

As
∣∣(a+ eiθ)/(a+ e−iθ)

∣∣ = 1, the desired form for ω̃(z) follows. �

Lemma 3. Let t(z) be defined by (9) and write t(z) = (z + A)(z + B). Also,
let a = |a|eiα, where α = arg a with |a| < 1. If

(11)

[
9 sin2

(
α+

θ

2

)
+ cos2

(
α+

θ

2

)]
|a|2 ≤ 1,

then |AB| ≤ 1. Moreover, |AB| = 1 if and only if

(12) |a| cos

(
α+

θ

2

)
=− cos

θ

2
and 3|a| sin

(
α+

θ

2

)
=sin

θ

2
for

1

3
≤ |a| < 1.
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Proof. By the definition of t(z), it is clear that

AB =
2a2eiθ + 2a+ 1− |a|2

2
(
a+ eiθ

) =
2a
(
aeiθ + 1

)
+
(
1− |a|2

)
2
(
a+ eiθ

) .

A computation leads to∣∣2a(aeiθ + 1
)

+
(
1− |a|2

)∣∣2 − 4
∣∣a+ eiθ

∣∣2 =
(
1− |a|2

)
v(a),

where v(a) is real and

(13) v(a) = 2
(
a2eiθ + a2e−iθ

)
+ 2
(
a+ a

)
− 4
(
aeiθ + ae−iθ

)
− 3− 5|a|2.

Suppose that a = |a|eiα, and by a simplification, we have

v(a) = 4|a|2 cos(2α+ θ) + 4|a| cosα− 8|a| cos(α+ θ)− 3− 5|a|2

= 4|a|2
[
1− 2 sin2

(
α+

θ

2

)]
+ 4|a|

[
cos

(
α+

θ

2

)
cos

θ

2
+ sin

(
α+

θ

2

)
sin

θ

2

]
− 8|a|

[
cos

(
α+

θ

2

)
cos

θ

2
− sin

(
α+

θ

2

)
sin

θ

2

]
− 3− 5|a|2

= 1−
[
|a| cos

(
α+

θ

2

)
+ 2 cos

θ

2

]2
−
[
3|a| sin

(
α+

θ

2

)
− 2 sin

θ

2

]2
.

By virtue of (11), we observe that

P1

(
x, y
)

= P1

(
|a| cos

(
α+

θ

2

)
, 3|a| sin

(
α+

θ

2

))
is a point that lies in the closed unit disk{

z = x+ yi ∈ C : x2 + y2 ≤ 1

}
,

whereas the point P2

(
− 2 cos θ2 , 2 sin θ

2

)
lies on the circle |z| = 2. Thus, the

distance between the points P1 and P2 must be at least 1. That is,√[
|a| cos

(
α+

θ

2

)
+ 2 cos

θ

2

]2
+

[
3|a| sin

(
α+

θ

2

)
− 2 sin

θ

2

]2
≥ 1

which is equivalent to saying that v(a) ≤ 0, i.e., |AB| ≤ 1. Moreover, in the
above inequality, equality holds if and only if the point P1 is the middle point of
the line segment joining P2 and the origin, that is P1(x, y) satisfies x2 +y2 = 1.
Since we note that P1(x, y) also is a point lies on the ellipse{

z = x+ yi ∈ C :
x2

|a|2
+

y2

9|a|2
= 1 for 0 < |a| < 1

}
.
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Thus, equality holds if and only if the point P1(x, y) satisfies the following
system of equations {

x2 + y2 = 1,
x2

|a|2 + y2

9|a|2 = 1,

and for 1/3 ≤ |a| < 1, the points

P1

(
|a| cos

(
α+

θ

2

)
, 3|a| sin

(
α+

θ

2

))
= P1

(
±
√

9|a|2 − 1

8
,±
√

9− 9|a|2
8

)
are the real roots of the above system of equations. That is that |AB| = 1
if and only if (12) holds. In conclusion, if (11) holds but not the (12), then
v(a) < 0 and hence, |AB| < 1 holds. If (12) holds, then v(a) = 0 and hence,
|AB| = 1 holds. This completes the proof. �

Lemma 4 (Cohn’s Rule, see [5]). Given a polynomial

f(z) = a0 + a1z + · · ·+ anz
n

of degree n, let

f∗(z) = znf(1/z) = an + an−1z + · · ·+ a0z
n.

Denote by p and s the number of zeros of f inside the unit circle and on it,
respectively. If |a0| < |an|, then

f1(z) =
anf(z)− a0f∗(z)

z

is of degree n− 1 with p1 = p− 1 and s1 = s the number of zeros of f1 inside
the unit circle and on it, respectively.

3. Main results

The main result of this paper is a generalization of the result of Li and
Ponnusamy. The difference is that our result allows a rotation parameter θ in
the dilatation.

Theorem 1. Let f = h + g ∈ R0
H with the dilatation ω(z) = eiθ z+a1+az , where

a = |a| eiα, α = arg a, |a| < 1 and θ ∈ R. If

(14)

[
9 sin2

(
α+

θ

2

)
+ cos2

(
α+

θ

2

)]
|a|2 ≤ 1

and

(15) |a| cos

(
α+

θ

2

)
6= − cos

θ

2
,

then f0 ∗ f ∈ S0H and is convex in the direction of the real axis.
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Proof. By Lemma 2 and the hypothesis, we can get the dilatation ω̃(z) of f0 ∗f
has the form (8). Then, we consider the function t(z) defined by (9) in the form

t(z) = z2 + a1z + a0 = (z +A)(z +B),

where −A, −B are the two roots of the equation t(z) = 0, so that

A+B = a1 =
4aeiθ + 3 |a|2 + 1

2
(
a+ eiθ

) and AB = a0 =
2a2eiθ + 2a+ 1− |a|2

2
(
a+ eiθ

) .

By virtue of Lemma 3 and the hypothesis, we have |a0| = |AB| < 1. Thus,
for a given a ∈ D, at least one of −A, −B lies in D. Now, without loss of
generality, we may assume that −A ∈ D. Furthermore, we can use Cohn’s rule
establish the result.

We note that

t1(z) =
t(z)− a0t∗(z)

z
=
(
1− |a0|2

)
z + a1 − a0a1

and so, t1(z) has one zero at

(16) z0 =
a0a1 − a1
1− |a0|2

=
A
(
|B|2 − 1

)
+B

(
|A|2 − 1

)
1− |AB|2

.

Now, we will prove the claim that −B ∈ D if and only if |z0| ≤ 1. As the
assumption |A| < 1, and the relation |AB| < 1, and by a routine computation,
it can be easily seen that∣∣A(|B|2−1

)
+B

(
|A|2−1

)∣∣2−(1−|AB|2)2 = −
(
1−|A|2

)(
1−|B|2

)
|1−AB|2 ≤ 0

if and only if |B| ≤ 1. In view of (16), it shows that |B| < 1 if and only if
|z0| < 1, and |B| = 1 if and only if |z0| = 1.

Next, we need to simplify the expression for z0. After a cumbersome calcu-
lation and simplification, we may conveniently write z0 as

z0 =
a0a1 − a1
1− |a0|2

=
u(a)

v(a)
,

where v(a) is given by (13) and

u(a) = 6a2eiθ − 4ae−iθ + 8a+ 2e−iθ − 1− 3 |a|2 .

We observe that |z0| ≤ 1 if and only if |u(a)|2− |v(a)|2 ≤ 0. In order to deal
with the inequality, as v(a) is real, we will consider∣∣u(a)

∣∣2 − ∣∣v(a)
∣∣2 =

[
<
(
u(a)

)
− v(a)

][
<
(
u(a)

)
+ v(a)

]
+
[
=
(
u(a)

)]2
,

and let

a = |a|eiα (|a| < 1; α ∈ R).

First we find that

<
(
u(a)

)
= 6|a|2 cos(2α+ θ)− 4|a| cos(α+ θ) + 8|a| cosα+ 2 cos θ − 1− 3|a|2,
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and

=
(
u(a)

)
= 6|a|2 sin(2α+ θ) + 4|a| sin(α+ θ) + 8|a| sinα− 2 sin θ

= 12|a|2 sin

(
α+

θ

2

)
cos

(
α+

θ

2

)
+ 12|a| sin

(
α+

θ

2

)
cos

θ

2

− 4|a| cos

(
α+

θ

2

)
sin

θ

2
− 4 sin

θ

2
cos

θ

2

= 4

[
|a| cos

(
α+

θ

2

)
+ cos

θ

2

][
3|a| sin

(
α+

θ

2

)
− sin

θ

2

]
.

Also, we see that

<
(
u(a)

)
− v(a)

= 2
[
|a|2 cos(2α+ θ) + 2|a| cos(α+ θ) + 2|a| cosα+ cos θ + |a|2 + 1

]
= 2

[
|a|2
(

cos(2α+ θ) + 1
)

+ 2|a|
(

cos(α+ θ) + cosα
)

+
(

cos θ + 1
)]

= 4

[
|a|2 cos2

(
α+

θ

2

)
+ 2|a| cos

(
α+

θ

2

)
cos

θ

2
+ cos2

θ

2

]
= 4

[
|a| cos

(
α+

θ

2

)
+ cos

θ

2

]2
and similarly,

<
(
u(a)

)
+ v(a)

= 10|a|2 cos(2α+ θ)− 12|a| cos(α+ θ) + 12|a| cosα+ cos θ − 8|a|2 − 4

= 2|a|2
[
5 cos(2α+ θ)− 4

]
+ 12|a|

[
cosα− cos(α+ θ)

]
+ 2
(

cos θ − 2
)

= 2|a|2
[
1− 10 sin2

(
α+

θ

2

)]
+ 24|a| sin

(
α+

θ

2

)
sin

θ

2
− 4 sin2 θ

2
− 2.

Using the above formulas, we get∣∣u(a)
∣∣2 − ∣∣v(a)

∣∣2
= 8

[
|a| cos

(
α+

θ

2

)
+ cos

θ

2

]2{
2

(
3|a| sin

(
α+

θ

2

)
− sin

θ

2

)2

+ |a|2
[
1− 10 sin2

(
α+

θ

2

)]
+ 12|a| sin

(
α+

θ

2

)
sin

θ

2
− 2 sin2 θ

2
− 1

}
= 8

[
|a| cos

(
α+

θ

2

)
+ cos

θ

2

]2[
|a|2 + 8|a|2 sin2

(
α+

θ

2

)
− 1

]
= 8

[
|a| cos

(
α+

θ

2

)
+ cos

θ

2

]2{[
9 sin2

(
α+

θ

2

)
+ cos2

(
α+

θ

2

)]
|a|2 − 1

}
.

Since |a| < 1 and (15) holds, the last equality shows that |z0| < 1 if and only if[
9 sin2

(
α+

θ

2

)
+ cos2

(
α+

θ

2

)]
|a|2 < 1,
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and |z0| = 1 if and only if[
9 sin2

(
α+

θ

2

)
+ cos2

(
α+

θ

2

)]
|a|2 = 1.

In conclusion, if (14) and (15) hold, then −A ∈ D and −B ∈ D. Thus, by
virtue of Lemma 2, we obtain that the dilatation ω̃ of f0 ∗ f satisfies∣∣ω̃(z)

∣∣ =

∣∣∣∣ z(z +A)(z +B)(
1 +Az

)(
1 +Bz

) ∣∣∣∣ < 1
(
z ∈ D

)
.

Furthermore, by Theorem A, we conclude that f0 ∗ f ∈ S0H and is convex in
the direction of the real axis. �

Remark 1. If we give different valves for the parameters θ ∈ R and a ∈ D
in Theorem 1, then we obtain the results Theorem B, Theorem C, and the
sufficiency part of Theorem D, respectively.

Finally, we present an example of a function, and the corresponding con-
volution function with a given dilatation, and illustrate them graphically by
using Mathematica software package. The example illustrates how Theorem 1
generalizes the result of Theorem D.

�4 �2 0 2 4

�4

�2

0

2
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�1.0 �0.5 0.0 0.5 1.0
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�0.5

0.0

0.5

1.0

Figure 1. The images of D under the mappings f and f0 ∗ f (right).

Example 1. If f = h+ g ∈ R0
H , and the dilatation is given by

ω(z) =
z + a

1 + az

with a = i/2, then obviously, the conditions (5) are not satisfied and Theorem
D cannot be used.
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However, if f = h + g ∈ R0
H , and the dilatation ω(z) is given by (6) with

a = i/2 and θ = −π, then α = π/2, and the conditions[
9 sin2

(
α+

θ

2

)
+ cos2

(
α+

θ

2

)]
|a|2 = |a|2 =

1

4
< 1

and

|a| cos

(
α+

θ

2

)
= |a| = 1

2
6= 0 = − cos

θ

2

are satisfied. Thus, by Theorem 1, f0 ∗ f ∈ S0H and is convex in the direction
of the real axis. Next we illustrate this result by finding the images of D under
the mappings f and f0 ∗ f .

First, we need to get the expressions of h and g. Since

h(z) + g(z) =
z

1− z
and g′(z) =

2z + i

iz − 2
h′(z),

we obtain

h′(z) =
iz − 2

(1− z)2[(i+ 2)z + (i− 2)]
and g′(z) =

2z + i

(1− z)2[(i+ 2)z + (i− 2)]
.

Computing h(z) and g(z) yields

h(z) =
1 + 2i

2

z

1− z
+

3

4
log

(i+ 2)z + (i− 2)

(i− 2)(1− z)
,

g(z) =
1− 2i

2

z

1− z
− 3

4
log

(i+ 2)z + (i− 2)

(i− 2)(1− z)
.

By writing the convolution, we have

f0 ∗ f = h0 ∗ h+ g0 ∗ g =
h+ zh′

2
+
g − zg′

2
,

so that

h0 ∗ h =
1 + 2i

4

z

1− z
+

3

8
log

(i+ 2)z + (i− 2)

(i− 2)(1− z)
+

(iz − 2)z

2(1− z)2[(i+ 2)z + (i− 2)]

and

g0 ∗ g =
1− 2i

4

z

1− z
− 3

8
log

(i+ 2)z + (i− 2)

(i− 2)(1− z)
− (2z + i)z

2(1− z)2[(i+ 2)z + (i− 2)]
.

Applying Lemma 2 with ω(z) = 2z+i
iz−2 , we get∣∣ω̃(z)

∣∣ =

∣∣∣∣zt(z)t∗(z)

∣∣∣∣ =

∣∣∣∣ z(z +A)(z +B)(
1 +Az

)(
1 +Bz

) ∣∣∣∣ < 1,

where

−A ≈ 0.776257− 0.592964i and −B ≈ −0.476257− 0.557036i

are the roots of the equation

t(z) = z2 − 1

20
(6− 23i)z − 1

20
(14 + 3i) = 0.
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The images of the unit disk D under f and f0 ∗ f are shown in Figure 1.
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