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Abstract. In this paper, we present some fixed point results for a general class of nonexpan-

sive mappings in the framework of Banach space and also proposed a new iterative scheme

for approximating the fixed point of this class of mappings in the frame work of uniformly

convex Banach spaces. Furthermore, we establish some basic properties and convergence re-

sults for our new class of mappings in uniformly convex Banach spaces. Finally, we present

an application to nonlinear integral equation and also, a numerical example to illustrate our

main result and then display the efficiency of the proposed algorithm compared to different

iterative algorithms in the literature with different choices of parameters and initial guesses.

The results obtained in this paper improve, extend and unify some related results in the

literature.

1. Introduction

The concept of fixed points theory and its application has proven to be
a vital tool in the study of nonlinear functional analysis and it is a very
useful tool in establishing the existence and uniqueness theorems for nonlinear
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ordinary, partial and random differential and integral equations in different
abstract spaces. Due to its applicability, authors generalize the well celebrated
Banach contraction theorem [2] by establishing fixed point results for nonlinear
mappings which are more general than the Banach contraction. We recall the
following. Let C be a nonempty subset of a Banach space X and T : C → C
a self-mapping. A point x ∈ X is said to be a fixed point of T if Tx = x.

Definition 1.1. ([5, 9, 10, 16, 18, 19]) A mapping T : C → C is said to be

(1) nonexpansive, if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C;
(2) mean nonexpansive, if there exist α, β ≥ 0 with α + β ≤ 1 such that
‖Tx− Ty‖ ≤ α‖x− y‖+ β‖x− Ty‖, for all x, y ∈ C;

(3) satisfy condition (C), if 1
2‖Tx−x‖ ≤ ‖x−y‖ ⇒ ‖Tx−Ty‖ ≤ ‖x−y‖;

for all x, y ∈ C;
(4) satisfy condition (Cλ), if λ‖Tx−x‖ ≤ ‖x−y‖ ⇒ ‖Tx−Ty‖ ≤ ‖x−y‖,

for all x, y ∈ C;
(5) generalized mean nonexpansive mapping if there exist α, β, λ ∈ [0, 1),

with α + β < 1 such that for all x, y ∈ C, λ‖Tx − x‖ ≤ ‖x − y‖ ⇒
‖Tx− Ty‖ ≤ α‖x− y‖+ β‖x− Ty‖;

(6) α-nonexpansive mapping if there exists α < 1 such that for all x, y ∈ C,
‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + α‖Ty − x‖2 + (1− 2α)‖x− y‖2;

(7) quasi-nonexpansive if ‖Tx− y‖ ≤ ‖x− y‖ for all x ∈ C and y ∈ F (T ),
where F (T ) is the set of fixed points of T.

It is worth mentioning that nonexpansive mappings are continuous on their
domains but mean nonexpansive, generalized mean nonexpansive, mappings
satisfying condition (C), condition (Cλ) need not be continuous. Due to this
fact, these mappings are more fascinating and applicable compare to nonex-
pansive mappings.

Question 1: Now a natural question that arises is, does a class of mapping
exist, that contains mean nonexpansive, generalized mean nonexpansive, map-
pings satisfying condition (C), condition (Cλ), α-nonexpansive mappings and
other nonexpansive type mappings are in existence in the literature?

In 1965, Browder [3] proved that the class of nonexpansive self mappings
on a closed and bounded subset of a uniformly convex Banach space has a
fixed point. Thereafter, researchers introduced different iterative schemes to
approximate fixed points of nonlinear mappings in different abstract spaces. In
this area of research, developing a faster and more efficient iterative algorithms
for approximating the fixed points of nonlinear mappings still remain an open
question and active area of research.

In 2011, Phuengrattana and Suantai [13] introduced SP -iterative process,
as follows:
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Let C be a convex subset of a normed space E and T : C → C be any nonlinear
mapping. For each x0 ∈ C, the sequence {xn} in C is defined by

zn = (1− αn)xn + αnTxn,

yn = (1− βn)zn + βnTzn,

xn+1 = (1− γn)yn + γnTyn, n ≥ 1,

(1.1)

where {αn}, {β} and {γ} are sequences in [0, 1]. They proved that their iter-
ative process converges faster than all of Picard, Mann [8], Ishikawa [7], Noor
[11], Abass et al. [1], processes and some other existing ones in literature.

In 2020, Chuadchawna et al. in [4] introduced an iterative process called
generalized M-iteration in the framework of hyperbolic spaces. For the sake of
completeness, we give the corresponding definition of generalized M-iteration
in the frame work of normed space as follows:

Let C be a convex subset of a normed space E and T : C → C be any
nonlinear mapping. For each x0 ∈ C, the sequence {xn} in C is defined by

zn = (1− αn)xn + αnTxn,

yn = βnzn + (1− βn)Tzn,

xn+1 = γnyn + (1− γn)Tyn, n ≥ 1,

(1.2)

where {αn}, {βn} and {γn} are sequences in [0, 1]. They established some fixed
point results in the framework of hyperbolic spaces. They also stated it clearly
that for βn = γn = 0, then iterative process (1.2) becomes M-iteration [17].
More so, they claim the the generalized M-iteration converges faster than the
M-iteration introduced in [17] and they gave a numerical example to justify
this claim.

Remark 1.2. We note that if α = βn = γn = 1
2 , then the iterative processes

(1.2) and (1.1) are the same.

Question 2: Now a natural question arises that can we introduce an iterative
algorithm that converges faster than (1.1), (1.2) and a host of other iterative
algorithms in the literature?

Motivated by the above research work and the ongoing research in this di-
rection, we provide an affirmative answer to the above questions raised, in
this work by introducing a new class of mapping, namely, generalized (α, β)-
nonexpansive mappings type and a new iterative scheme whose rate of conver-
gence is faster than existing iterative algorithms in the literature. In addition,
we establish convergence results for these proposed iterative algorithms. Fi-
nally, we apply our result to an integral equations. The results obtained in
this paper improved, extend and unify some related results in the literature.
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2. Preliminaries

We give some definitions and results that will be used in the sequel.
Let X be a Banach space with dimension greater than or equal to 2. The

function δX(ε) : (0, 2]→ [0, 1] defined by

δX(ε) = inf

{
1− ‖1

2
(x+ y)‖ : ‖x‖ = 1; ‖y‖ = 1, ε = ‖x− y‖

}
is called the modulus of convexity of X. If δX(ε) > 0 for all ε ∈ (0, 2], then
X is called uniformly convex. Let X be a Banach space, X∗ its dual and
S(X) = {x ∈ X : ‖x‖ = 1}. We have that the value of f ∈ X∗ at x ∈ X is
defined by 〈x, f〉.

Definition 2.1. ([6], [16])

(1) The multivalued mapping J : X → 2X
∗

defined by

J(x) =

{
f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2

}
is called the normalized duality mapping.

(2) A Banach space X is smooth if the limit limt→0
‖x+ty‖−‖x‖

t exists for
each x, y ∈ S(X). In this case, the norm of X is called Gateaux differ-
entiable. It is known that J is single valued if X is smooth.

(3) A Banach space X is Frechet differentiable norm, if for each x ∈ S(X)
the limit above exists and is attained uniformly for y ∈ S(X). In this
case, we have that for all x, h ∈ X,

〈h, J(x)〉+
1

2
‖x‖2 ≤ 1

2
‖x+ h‖2 ≤ 〈h, J(x)〉+

1

2
‖x‖2 + b(‖h‖),

where J(x) is the Frechet derivative of the functional 1
2‖·‖ at x ∈ X and

b is an increasing function defined on [0,∞) such that limt↓0
b(t)
t = 0.

(4) A Banach space X is said to have Opial property [12] if for every
weakly convergent sequence {xn} in X with weak limit y, we have

lim inf
n→∞

‖xn − y‖ < lim inf
n→∞

‖xn − z‖, ∀z ∈ X

with y 6= z.
(5) Let C be a closed convex and bounded subset of X and T : C → C

be a nonexpansive mapping. Then there exists a sequence {xn} in C
such that ‖xn − Txn‖ → 0 as n → ∞. Such {xn} is called an almost
fixed point sequence for T .

Definition 2.2. ([5], [16]) Let C be a nonempty subset of a Banach space X
and {xn} be a bounded sequence in X. For all x, y ∈ X.
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(1) An asymptotic radius of {xn} at x is defined by

r(x, {xn}) = lim sup
n→∞

‖xn − x‖;

(2) An asymptotic radius of {xn} relative to C is defined by

r(C, {xn}) = inf{r, (x, {xn}) : x ∈ C};
(3) An asymptotic center of {xn} relative to C is defined by

A(C, {xn}) = {r(x, {xn}) = r(C, {xn}) : x ∈ C}.

We note that A(C, {xn}) is nonempty and more so, if X is uniformly convex,
then A(C, {xn}) has exactly one point (see [6]).

Lemma 2.3. ([14]) Let X be a uniformly convex Banach space and 0 < p ≤
tn ≤ q < 1 for all n ∈ N. Let {xn} and {yn} be two sequences of X such that
lim supn→∞ ‖xn‖ ≤ c, lim supn→∞ ‖yn‖ ≤ c and limn→∞ ‖tnxn+(1−tn)yn‖ =
c holds for some c ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Definition 2.4. ([15]) Let C be a subset of a normed space X. A mapping
T : C → C is said to satisfy condition (I) if there exists a nondecreasing
function f : [0,∞)→ [0,∞) such that f(0) = 0 and f(t) > 0 for all t ∈ (0,∞)
and that ‖x − Tx‖ ≥ f(d(x, F (T ))) for all x ∈ C, where d(x, F (T )) denotes
distance from x to F (T ).

3. Main results

3.1. Generalized (α, β)-Nonexpansive Mappings. In this section, we in-
troduce the notion of generalized (α, β)-nonexpansive mappings and give some
basic properties for this class of mappings.

Definition 3.1. Let C be a nonempty subset of a Banach space X. A mapping
T : C → C is said to be generalized (α, β)-nonexpansive type 1 if there
exist α, β, λ ∈ [0, 1), with α ≤ β and α + β < 1 such that for all x, y ∈ C,
λ‖Tx− x‖ ≤ ‖x− y‖, then

‖Tx− Ty‖ ≤ α‖y − Tx‖+ β‖x− Ty‖+ (1− (α+ β))‖x− y‖.

Remark 3.2. It is easy to see that the following statements are true.

(1) If α = β = 0 and λ = 1
2 , then the generalized (α, β)-nonexpansive type

1 mapping satisfying the condition (C).
(2) If α = β = 0 and λ ∈ [0, 1), then the generalized (α, β)-nonexpansive

type 1 mapping satisfying condition (Cλ).
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Definition 3.3. Let C be a nonempty subset of a Banach space X. A mapping
T : C → C is said to be generalized (α, β)-nonexpansive type 2 if there exist
α, β, λ ∈ [0, 1), with α+β < 1 such that for all x, y ∈ C, λ‖Tx−x‖ ≤ ‖x− y‖
then

‖Tx− Ty‖ ≤ max

{
P (x, y), Q(x, y)

}
, (3.1)

where

P (x, y) = α‖y − Tx‖+ β‖x− Ty‖+ (1− (α+ β))‖x− y‖

and

Q(x, y) = α‖x− Tx‖+ β‖y − Ty‖+ (1− (α+ β))‖x− y‖.

Proposition 3.4. We know that the following statements from the definitions.

(1) Every nonexpansive mapping is a generalized (α, β)-nonexpansive type
1 mapping.

(2) Every mean nonexpansive mapping is a generalized (α, β)-nonexpansive
type 1 mapping.

(3) All mappings satisfying condition (C) is an (α, β)-nonexpansive type
1 mapping.

(4) All mappings satisfying condition (Cλ) is an (α, β)-nonexpansive type
1 mapping.

The following example shows that the converse of these statements are not
always true.

Example 3.5. Let C = {(0, 0), (1, 0), (3, 0)} be a subset of R2 with norm ‖ · ‖
on C defined ‖(x1, x2)‖ = |x1|+ |x2|. Then (C, ‖ · ‖) is a Banach space. Define
a mapping T : C → C by

T (x) =

{
(0, 0), if x ∈ {(0, 0), (1, 0)},
(1, 0), if x = (3, 0).

(3.2)

For λ = 1
10 , α = 1

2 , and β = 1
3 , we consider the following cases.

Case I: For x = (0, 0) and y = (0, 0). It is easy to see that T is a generalized
(12 ,

1
3)-nonexpansive type 1 mapping.

Case II a: For x = (0, 0) and y = (1, 0). We have that

1

10
‖(0, 0)− (0, 0)‖ = 0 < 1 = ‖x− y‖
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and

‖Tx− Ty‖ = 0 <
1

2
‖y − Tx‖+

1

3
‖x− Ty‖+

1

6
‖x− y‖.

Case II b:
For x = (1, 0) and y = (0, 0). We have that

1

10
‖(0, 0)− (0, 0)‖ = 0 < 1 = ‖x− y‖

and

‖Tx− Ty‖ = 0 <
1

2
‖y − Tx‖+

1

3
‖x− Ty‖+

1

6
‖x− y‖.

Case III a: For x = (0, 0) and y = (3, 0). We have that

1

10
‖(0, 0)− (0, 0)‖ = 0 < 3 = ‖x− y‖

and

‖Tx− Ty‖ = |(0, 0)− (1, 0)| = 1

<
1

2
‖y − Tx‖+

1

3
‖x− Ty‖+

1

6
‖x− y‖.

Case III b:
For x = (3, 0) and y = (0, 0). We have that

1

10
‖(3, 0)− (1, 0)‖ =

1

5
< 3 = ‖x− y‖

and

‖Tx− Ty‖ = |(1, 0)− (0, 0)| = 1

<
1

2
‖y − Tx‖+

1

3
‖x− Ty‖+

1

6
‖x− y‖.

Case IV a: For x = (1, 0) and y = (3, 0). We have that

1

10
‖(1, 0)− (0, 0)‖ =

1

10
< 2 = ‖x− y‖,

and

‖Tx− Ty‖ = |(0, 0)− (1, 0)| = 1

<
1

2
‖y − Tx‖+

1

3
‖x− Ty‖+

1

6
‖x− y‖.

Case IV b:
For x = (3, 0) and y = (1, 0). We have that

1

10
‖(3, 0)− (1, 0)‖ =

1

5
< 2 = ‖x− y‖,
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and

‖Tx− Ty‖ = |(1, 0)− (0, 0)| = 1

<
1

2
‖y − Tx‖+

1

3
‖x− Ty‖+

1

6
‖x− y‖.

Case V: For x = y = (3, 0). We have

1

10
‖(3, 0)− (1, 0)‖ =

1

5
> 0 = ‖x− y‖.

Also, x = y = (1, 0). We have

1

10
‖(1, 0)− (0, 0)‖ =

1

10
> 0 = ‖x− y‖,

so, we have nothing to show.

Thus, we have that T is a generalized (12 ,
1
3)-nonexpansive type 1 mapping.

Now, we establish that T is not a mean nonexpansive, generalized mean non-
expansive, mappings satisfying condition (C), condition (Cλ) and α-nonexpansive
mappings.

Indeed, we suppose that T is a mean nonexpansive mapping, so therefore,
there exists nonnegative real numbers α and β, with α+ β ≤ 1 such that

‖Tx− Ty‖ ≤ α‖x− y‖+ β‖x− Ty‖
for all x, y ∈ C. Now, consider x = (0, 0) and y = (1, 0), we then have that

‖Tx− Ty‖ = 0

≤ α‖x− y‖+ β‖x− Ty‖
= α.

Thus, we obtain that α ≤ 1 and β = 0. So therefore, T is a nonexpansive
mapping, which is a contradiction.

Proposition 3.6. Let C be a nonempty subset of a Banach space X and T :
C → C be a generalized (α, β)-nonexpansive type 1 mapping with F (T ) 6= ∅.
Then T is quasi-nonexapansive.

Proof. Let x ∈ F (T ) and y ∈ C,
λ‖Tx− x‖ = 0 ≤ ‖x− y‖.

So, we have

‖x− Ty‖ = ‖Tx− Ty‖
≤ α‖y − Tx‖+ β‖x− Ty‖+ (1− (α+ β))‖x− y‖
= α‖y − x‖+ β‖x− Ty‖+ (1− (α+ β))‖x− y‖,
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it implies that

(1− β)‖x− Ty‖ ≤ (1− β)‖x− y‖.
That is,

‖x− Ty‖ ≤ ‖x− y‖.
This means that T is quasi-nonexpanisve. �

Theorem 3.7. Let C be a nonempty subset of a Banach space X and T :
C → C be a generalized (α, β)-nonexpansive type 1 mapping. Then F (T ) is
closed. Furthermore, if X is strictly convex and C is convex, then F (T ) is
convex.

Proof. Let {xn} be a sequence in F (T ) such that {xn} converges to some
y ∈ C. We show that y ∈ F (T ). Since

λ‖Txn − xn‖ = 0 ≤ ‖xn − y‖,

so, we have

‖xn − Ty‖ = ‖Txn − Ty‖
≤ α‖y − Txn‖+ β‖xn − Ty‖+ (1− (α+ β))‖xn − y‖,

it implies that

‖xn − Ty‖ ≤ ‖xn − y‖.
Since lim

n→∞
‖xn − y‖ = 0, we obtain

lim
n→∞

‖xn − Ty‖ = 0.

As such, we have that Ty = y. Hence, F (T ) is closed. Now suppose that
X is strictly convex and C is convex. We show that F (T ) is convex. Let
x, y ∈ F (T ), z ∈ C with x 6= y. Since

λ‖x− Tx‖ = 0 ≤ ‖x− z‖,

we obtain

‖x− Tz‖ = ‖Tx− Tz‖ ≤ α‖z − Tx‖+ β‖x− Tz‖+ (1− (α+ β))‖x− z‖,

it implies that

‖x− Tz‖ ≤ ‖x− z‖. (3.3)

Using similar argument, we have

‖y − Tz‖ ≤ ‖y − z‖. (3.4)
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Let z = γx + (1 − γ)y ∈ C, for γ ∈ [0, 1]. Then from (3.3) and (3.4), we
obtain

‖x− y‖ ≤ ‖x− Tz‖+ ‖Tz − y‖
≤ ‖x− z‖+ ‖z − y‖ (3.5)

= ‖x− (γx+ (1− γ)y)‖+ ‖(γx+ (1− β)y − y‖
≤ (1− γ)‖x− x‖+ γ‖x− y‖+ (1− γ)‖x− y‖+ γ‖y − y‖
= ‖x− y‖.

Using the fact that X is strictly convex, there exists µ ∈ [0, 1] such that
Tz = µx+ (1− µ)y. Now

(1− µ)‖x− y‖ = ‖Tx− Tz‖ ≤ ‖x− z‖ = (1− γ)‖x− y‖ (3.6)

and

µ‖x− y‖ = ‖Ty − Tz‖ ≤ ‖x− z‖ = γ‖x− y‖. (3.7)

From the above inequalities (3.6) and (3.7), we have 1 − µ ≤ 1 − γ and
µ ≤ γ, this implies that µ = γ. Thus, z ∈ F (T ), which implies that F (T ) is
convex. �

In view of Proposition 3.4, we have the following corollaries.

Corollary 3.8. Let C be a nonempty subset of a Banach space X and T :
C → C be a nonexpansive mapping. Then F (T ) is closed. Furthermore, if X
is strictly convex and C is convex, then F (T ) is convex.

Corollary 3.9. Let C be a nonempty subset of a Banach space X and T :
C → C be a mean nonexpansive mapping. Then F (T ) is closed. Furthermore,
if X is strictly convex and C is convex, then F (T ) is convex.

Corollary 3.10. Let C be a nonempty subset of a Banach space X and
T : C → C be a mapping satisfying condition (C). Then F (T ) is closed.
Furthermore, if X is strictly convex and C is convex, then F (T ) is convex.

Corollary 3.11. Let C be a nonempty subset of a Banach space X and
T : C → C be a mapping satisfying condition (Cλ). Then F (T ) is closed.
Furthermore, if X is strictly convex and C is convex, then F (T ) is convex.

Corollary 3.12. Let C be a nonempty subset of a Banach space X and T :
C → C be a generalized mean nonexpansive mapping. Then F (T ) is closed.
Furthermore, if X is strictly convex and C is convex, then F (T ) is convex.
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Lemma 3.13. Let C be a nonempty subset of a Banach space X. Suppose that
T : C → C is a generalized (α, β)-nonexpansive type 1 mapping on C. Then
for all x, y ∈ C and for γ ∈ [0, 1), we have the following:

(1) ‖T 2x− Tx‖ < ‖Tx− x‖.
(2) Either γ

2‖x− Tx‖ ≤ ‖x− y‖ or γ
2‖Tx− T

2x‖ ≤ ‖Tx− y‖.
(3) Either ‖Tx − Ty‖ ≤ α‖Tx − y‖ + β‖Ty − x‖ + (1 − (α + β))‖x − y‖

or ‖T 2x− Ty‖ ≤ α‖T 2x− y‖+ β‖Ty− Tx‖+ (1− (α+ β))‖Tx− y‖.

Proof. (1) For all x ∈ C, we have that λ‖Tx− x‖ ≤ ‖Tx− x‖, which implies
that

‖T 2x− Tx‖ = ‖T (Tx)− Tx‖
≤ α‖T (Tx)− x‖+ β‖Tx− Tx‖+ (1− (α+ β))‖Tx− x‖
= α‖T (Tx)− x‖+ (1− (α+ β))‖Tx− x‖
≤ α[‖T (Tx)− Tx‖+ ‖Tx− x‖] + (1− (α+ β))‖Tx− x‖
= α‖T 2x− Tx‖+ (1− β))‖Tx− x‖,

this implies that

‖T 2x− Tx‖ ≤ 1− β
1− α

‖Tx− x‖ < ‖Tx− x‖.

(2) Suppose, on the contrary γ
2‖x−Tx‖ > ‖x−y‖ and γ

2‖Tx−T
2x‖ > ‖Tx−y‖,

for some x, y ∈ C. Now, using (1), observe that

‖x− Tx‖ ≤ ‖x− y‖+ ‖y − Tx‖

<
γ

2
‖x− Tx‖+

γ

2
‖Tx− T 2x‖

<
γ

2
‖x− Tx‖+

γ

2
‖x− Tx‖

= γ‖x− Tx‖
< ‖x− Tx‖,

which is a contradiction. Thus, we obtain the desired result.
(3) The proof here follows from (2). Thus, we omit it. �

Lemma 3.14. Let C be a nonempty subset of a Banach space X and T : C →
C be a generalized (α, β)-nonexpansive type 1 mapping. Then for all x, y ∈ C,

‖x− Ty‖ ≤ (2 + α+ β)

(1− β)
‖x− Tx‖+ ‖x− y‖.

Proof. From Lemma 3.13, we have that for all x, y ∈ C,

‖Tx− Ty‖ ≤ α‖Tx− y‖+ β‖Ty − x‖+ (1− (α+ β))‖x− y‖
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or

‖T 2x− Ty‖ ≤ α‖T 2x− y‖+ β‖Ty − Tx‖+ (1− (α+ β))‖Tx− y‖.

Considering ‖Tx− Ty‖ ≤ α‖Tx− y‖+ β‖Ty− x‖+ (1− (α+ β))‖x− y‖, we
obtain that

‖x− Ty‖
≤ ‖x− Tx‖+ ‖Tx− Ty‖
≤ ‖x− Tx‖+ α‖Tx− y‖+ β‖Ty − x‖+ (1− (α+ β))‖x− y‖
≤ ‖x− Tx‖+ α‖Tx− x‖+ α‖x− y‖+ β‖Ty − x‖+ (1− (α+ β))‖x− y‖
= (1 + α)‖x− Tx‖+ β‖Ty − x‖+ (1− β)‖x− y‖,

it implies that

‖x− Ty‖ ≤ (1 + α)

(1− β)
‖x− Tx‖+ ‖x− y‖

≤ (2 + α+ β)

(1− β)
‖x− Tx‖+ ‖x− y‖.

Also, considering ‖T 2x−Ty‖ ≤ α‖T 2x−y‖+β‖Ty−Tx‖+(1−(α+β))‖Tx−y‖,
using (1) of Lemma 3.13, we obtain that

‖x− Ty‖
≤ ‖x− Tx‖+ ‖Tx− T 2x‖+ ‖T 2x− Ty‖
< ‖x− Tx‖+ ‖x− Tx‖+ α‖T 2x− y‖+ β‖Ty − Tx‖

+ (1− (α+ β))‖Tx− y‖
≤ 2‖x− Tx‖+ α‖T 2x− Tx‖+ α‖Tx− y‖+ β‖Ty − x‖+ β‖x− Tx‖

+ (1− (α+ β))‖Tx− y‖
< 2‖x− Tx‖+ α‖x− Tx‖+ α‖Tx− y‖+ β‖Ty − x‖+ β‖x− Tx‖

+ (1− (α+ β))‖Tx− y‖
= (2 + α+ β)‖x− Tx‖+ β‖Ty − x‖+ (1− β)‖x− y‖,

it implies that

‖x− Ty‖ ≤ (2 + α+ β)

(1− β)
‖x− Tx‖+ ‖x− y‖.

Thus in both cases, we obtain the desired result. �

Theorem 3.15. Let C be a nonempty closed subset of a Banach space X
with Opial property and T : C → C be a generalized (α, β)-nonexpansive
type 1 mapping with λ = γ

2 , γ ∈ [0, 1). If {xn} converges weakly to x and
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limn→∞ ‖Txn − xn‖ = 0, then Tx = x. That is I − T is demiclosed at zero,
where I is the identity mapping on X.

Proof. By Lemma 3.13

λ‖xn − Txn‖ ≤ ‖xn − x‖.

Thus by the definition of generalized (α, β)-nonexpansive type 1 mapping T ,

‖Txn − Tx‖ ≤ α‖Txn − x‖+ β‖Tx− xn‖+ (1− (α+ β))‖xn − x‖.

Now, observe that

‖xn − Tx‖
≤ ‖xn − Txn‖+ ‖Txn − Tx‖
≤ ‖xn − Txn‖+ α‖Txn − x‖+ β‖Tx− xn‖+ (1− (α+ β))‖xn − x‖
≤ ‖xn − Txn‖+ α‖Txn − xn‖+ α‖xn − x‖+ β‖Tx− xn‖

+ (1− (α+ β))‖xn − x‖
= (1 + α)‖xn − Txn‖+ β‖Tx− xn‖+ (1− β))‖xn − x‖,

it implies that

‖xn − Tx‖ ≤
1 + α

(1− β)
‖xn − Txn‖+ ‖xn − x‖.

Using our hypothesis, we have that

lim inf
n→∞

‖xn − Tx‖ ≤ lim inf
n→∞

‖xn − x‖. (3.8)

Using our hypothesis that {xn} converges weakly to x and Opial property, we
have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − Tx‖,

which contradicts (3.8). Thus, we have that Tx = x. �

Theorem 3.16. Let C be a nonempty compact subset of a Banach space X
and T : C → C be a generalized (α, β)-nonexpansive type 1 mapping with
λ = γ

2 , γ ∈ [0, 1). Then T has a fixed point in C if and only if T admits an
almost fixed point sequence.

Proof. The proof follows a similar approach as in Theorem 3.15, and thus, we
omit it. �
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3.2. Convergence Results. In this section, we established some convergence
results of a new three steps iterative algorithm generated by the generalized
(α, β)-nonexpansive type 1 mapping in a uniformly convex Banach space. We
define our iterative process as follows:

For each x0 ∈ C, the sequence {xn} in C is defined by


zn = (1− γn)xn + γnTxn,

yn = (1− αn)Tzn + αnT
2zn,

xn+1 = T [(1− βn)T 2zn + βnT
2yn], n ≥ 0,

(3.9)

where {αn}, {βn} and {γn} are sequences in (0, 1).

Lemma 3.17. Let C be a nonempty closed and convex subset of a uniformly
convex Banach space X and T : C → C be a generalized (α, β)-nonexpansive
type 1 mapping with F (T ) 6= ∅. Suppose that {xn} is defined by (3.9). Then,
we have the followings:

(i) {xn} is bounded;
(ii) limn→∞ ‖xn − x∗‖ exists for all x∗ ∈ F (T ).

Proof. Let x∗ ∈ F (T ), using (3.9) and Proposition 3.6, we obtain

‖zn − x∗‖ ≤ (1− γn)‖xn − x∗‖+ γn‖Txn − x∗‖
≤ (1− γn)‖xn − x∗‖+ γn‖xn − x∗‖ (3.10)

= ‖xn − x∗‖.

Also, using (3.9), (3.10) and Proposition 3.6, we obtain

‖yn − x∗‖ = ‖(1− αn)Tzn + αnT
2zn − x∗‖

≤ (1− αn)‖Tzn − x∗‖+ αn‖T (Tzn)− x∗‖
≤ (1− αn)‖zn − x∗‖+ αn‖Tzn − x∗‖
≤ (1− αn)‖zn − x∗‖+ αn‖zn − x∗‖ (3.11)

= ‖zn − x∗‖
≤ ‖xn − x∗‖.
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Lastly, using (3.9), (3.11) and Proposition 3.6, we obtain

‖xn+1 − x∗‖ = ‖T [(1− βn)T 2zn + βnT
2yn]− x∗‖

≤ (1− βn)‖T 2zn − x∗‖+ βn‖T 2yn − x∗‖
= (1− βn)‖T (Tzn)− x∗‖+ βn‖T (Tyn)− x∗‖
≤ (1− βn)‖Tzn − x∗‖+ βn‖Tyn − x∗‖
≤ (1− βn)‖zn − x∗‖+ βn‖yn − x∗‖
≤ (1− βn)‖xn − x∗‖+ βn‖xn − x∗‖ (3.12)

= ‖xn − x∗‖.
This shows that {‖xn−x∗‖} is bounded and non-increasing for all x∗ ∈ F (T ).
Thus, {xn} is bounded and limn→∞ ‖xn − x∗‖ exists. �

Lemma 3.18. Let C be a nonempty closed and convex subset of a uniformly
convex Banach space X and T : C → C be a generalized (α, β)-nonexpansive
type 1 mapping with F (T ) 6= ∅. Suppose that {xn} is defined by (3.9). Then
limn→∞ ‖Txn − xn‖ = 0.

Proof. Let x∗ ∈ F (T ). It follows from Lemma 3.17 that {xn} is bounded and
limn→∞ ‖xn−x∗‖ exists for all x∗ ∈ F (T ). Suppose that limn→∞ ‖xn−x∗‖ = c.
From (3.10), we obtain that ‖zn − x∗‖ ≤ ‖xn − x∗‖. Taking limsup of both
sides, we have

lim sup
n→∞

‖zn − x∗‖ ≤ c. (3.13)

In addition, using Proposition 3.6, we obtain that ‖Txn − x∗‖ ≤ ‖xn − x∗‖,
and that

lim sup
n→∞

‖Txn − x∗‖ ≤ c. (3.14)

From (3.12), we have

‖xn+1 − x∗‖ ≤ (1− βn)‖zn − x∗‖+ βn‖xn − x∗‖.
Taking the lim infn→∞ of both sides and rearranging the inequalities, we have

c ≤ (1− βn) lim sup
n→∞

‖zn − c‖+ βnc,

that is,

c ≤ lim inf
n→∞

‖zn − x∗‖. (3.15)

From (3.13) and (3.15), we obtain that limn→∞ ‖zn − x∗‖ = c. That is,

lim
n→∞

‖(1− γn)xn + γnTxn − x∗‖ = c.

Thus, by Lemma 2.3, we have limn→∞ ‖xn − Txn‖ = 0. �
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Theorem 3.19. Let X be a uniformly convex Banach space which satisfies the
Opial condition and C be a nonempty closed convex subset of X. Let T : C → C
be a generalized (α, β)-nonexpansive type 1 mapping such that λ = γ

2 ∈ [0, 12 ]
with F (T ) 6= ∅ and {xn} be a sequence defined by (3.9). Then, {xn} converges
weakly to a fixed point of T.

Proof. It has been established in Lemma 3.17 that limn→∞ ‖xn − x∗‖ exists
and that {xn} is bounded. Now, since X is uniformly convex, we can find a
subsequence say {xni} of {xn} that converges weakly in C. We now establish
that {xn} has a unique weak subsequential limit in F (T ). Let x and y be
weak limits of the subsequences {xni} and {xnj} of {xn} respectively. By
Theorem 3.18, we have that limn→∞ ‖xn − Txn‖ = 0 and I − T is demiclosed
with respect to zero by Theorem 3.15, we therefore have that Tx = x. Using
a similar approach, we can show that y = Ty. It follows from Lemma 3.17
that limn→∞ ‖xn − y‖ exists. Now, suppose that x 6= y, then by the Opial
condition,

lim
n→∞

‖xn − x‖ = lim
k→∞

‖xnk
− x‖

< lim
k→∞

‖xnk
− y‖

= lim
n→∞

‖xn − y‖

= lim
j→∞

‖xnj − y‖

< lim
j→∞

‖xnj − x‖

= lim
n→∞

‖xn − x‖.

This is a contradiction. So x = y. Hence, {xn} converges weakly to a fixed
point of F (T ) and this completes the proof. �

Theorem 3.20. Let C be a nonempty closed convex subset of a uniformly
convex Banach space X. Let T be a generalized (α, β)-nonexpansive type 1
mapping on C, {xn} be defined by (3.9) and F (T ) 6= ∅. Then, {xn} converges
strongly to a point of F (T ) if and only if

lim inf
n→∞

d(xn, F (T )) = 0,

where d(x, F (T )) = inf{‖x− x∗‖ : x∗ ∈ F (T )}.

Proof. Let {xn} converges to x∗ a fixed point of T. Then limn→∞ d(xn, x
∗) = 0,

and since 0 ≤ d(xn, F (T )) ≤ d(xn, x
∗), it follows that limn→∞ d(xn, F (T )) = 0.

Therefore, lim infn→∞ d(xn, F (T )) = 0.
Conversely, suppose that lim infn→∞ d(xn, F (T )) = 0. It follows from Lemma

3.17 that limn→∞ ‖xn − x∗‖ exists and that limn→∞ d(xn, F (T )) exists for all
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x∗ ∈ F (T ). By our hypothesis, lim infn→∞ d(xn, F (T )) = 0. Suppose {xnk
} is

any arbitrary subsequence of {xn} and {uk} is a sequence in F (T ) such that
for all n ∈ N,

‖xnk
− uk‖ <

1

2k
,

it follows from (3.12) that ‖xn+1 − uk‖ ≤ ‖xn − uk‖ < 1
2k
, hence

‖uk+1 − uk‖ ≤ ‖uk+1 − xn+1‖+ ‖xn+1 − uk‖

<
1

2k+1
+

1

2k

<
1

2k−1
.

Thus, we have that {uk} is a Cauchy sequence in F (T ). Also, by Theorem 3.7,
we have that F (T ) is closed. Thus {uk} is a convergent sequence in F (T ).
Now, suppose that {uk} converges to p ∈ F (T ). Therefore, since

‖xnk
− p‖ ≤ ‖xnk

− uk‖+ ‖uk − p‖ → 0 as k →∞,

we obtain that lim
k→∞

‖xnk
−p‖ = 0 and so {xnk

} converges strongly to p ∈ F (T ).

Since lim
n→∞

‖xn − p‖ exists, it follows that {xn} converges strongly to p. �

Theorem 3.21. Let C be a nonempty closed convex subset of a uniformly
convex Banach space X. Let T be a generalized (α, β)-nonexpansive type 1
mapping, {xn} be defined by (3.9) and F (T ) 6= ∅. Let T satisfy condition (I).
Then, {xn} converges strongly to a fixed point of T.

Proof. Using Lemma 3.17 and Theorem 3.18, we obtain that

lim
n→∞

‖xn − Txn‖ = 0.

Using the fact that for all x ∈ C,

0 ≤ lim
n→∞

f(d(xn, F (T ))

≤ lim
n→∞

‖xn − Txn‖

= 0

and that

lim
n→∞

f(d(xn, F (T ))) = 0.

Since, f is nondecreasing with f(0) = 0 and f(t) > 0 for t ∈ (0,∞), it then
follows that limn→∞ d(xn, F (T )) = 0. Thus using Theorem 3.20, we obtain
that {xn} converges strongly to p ∈ F (T ). �
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4. Application to nonlinear integral equation

In this section, we present an application of our result to nonlinear integral
equation of the form:

x(t) = g(t) + γ

∫ b

a
M(t, s)h(t, x(s))ds, (4.1)

where γ ∈ (0, 1],M : [a, b]× [a, b] → R+, h : [a, b]× R → R and g : [a, b] → R
are continuous functions. Let X = C([a, b],R) be the space of all continuous
real valued functions defined on [a, b] with ordered relation ≤ in X defined as
for x, y ∈ X,x ≤ y if and only if x(s) ≤ y(s) for all s ∈ [a, b]. We defined
‖ · ‖ : X ×X → [0,∞) by ‖x− y‖ = sups∈[a,b] |x(s)− y(s)|.

Theorem 4.1. Let X = C([a, b],R) and T : X → X the operator given by

Tx(t) = g(t) + γ

∫ b

a
M(t, s)h(t, x(s))ds

for all t, s ∈ [a, b], where γ ∈ [0, 1],M : [a, b]× [a, b] → R+, h : [a, b]× R → R
and h : [a, b]→ R are continuous functions. Let X = C([a, b],R) be the space
of all continuous real valued functions defined on [a, b]. Furthermore, suppose
the following conditions hold:

(1) there exists a continuous mapping υ : X ×X → [0,∞) such that

|h(s, x(s))− h(s, y(s))| ≤ υ(x, y)|x(s)− y(s)|

for all s ∈ [a, b] and x, y ∈ X.
(2) there exists ω ∈ [0, 1], such that∫ b

a
M(t, s)υ(x, y) ≤ ω.

Then the integral equation (4.1) has a solution.

Proof. Without loss of generality, we suppose that x ≤ y, so that

sup{|y(s)− x(s)| : s ∈ [a, b]} ≥ sup{|Tx(s)− x(s)| : s ∈ [a, b]},

which implies that

λ‖Tx− x‖ ≤ ‖Tx− x‖ ≤ ‖y − x‖,
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where λ ∈ [0, 1). Thus, we have that

|Ty(s)− Tx(s)|

=

∥∥∥∥g(t) + γ

∫ b

a
M(t, s)h(t, y(s))− g(t)− γ

∫ b

a
M(t, s)h(t, x(s))ds

∥∥∥∥
≤ γ

∫ b

a
|M(t, s)[h(t, y(s))− h(t, x(s))]|ds

≤ γ
∫ b

a
M(t, s)υ(x, y)|y(s)− x(s)|ds

≤ sup
s∈[a,b]

|y(s)− x(s)|γ
∫ b

a
M(t, s)µ(x, y)ds

≤ γω‖y − x‖
≤ ‖y − x‖.

Thus, we have that, for λ‖x− Tx‖ ≤ ‖x− y‖,
‖Tx− Ty‖ ≤ ‖x− y‖.

Clearly, T satisfies condition (Cλ) and by Proposition 3.4, T is a generalized
(α, β)-nonexpansive mapping and all the conditions in Theorem 3.16 are sat-
isfied, as such T has a fixed point, that is the integral equation (4.1) has a
solution. �

5. Numerical examples

Example 5.1. Define a mapping T : [0, 1]→ [0, 1] as

Tx =

{
1− x if x ∈ [0, 18),
x+7
8 if x ∈ [18 , 1].

(5.1)

Then, it is easy to see that T satisfy condition (C), thus it is a generalized
(α, β)-nonexpansive mapping.

In what follows, we numerically compare our new iteration process with
some existing iterative processes.

Case I: Taking, αn = 1√
n3+4

, γn = 3
(n3+200)

, βn = 2√
n3+5

and x0 = 0.5.

Case II: Taking, αn = 1
202 , γn = 1

1000 , βn = 1
300 and x0 = 0.8.

Case III: Taking, αn = 1√
n30+40

, γn = 3
300n3 , βn = 1√

n10+50
and x0 = 0.3.

Case IV: Taking, αn = 5
300n30 , γn = 8

1000n34 , βn = 7
200n20 and x0 = 0.6.
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Figure 1. Example 5.1, Top Left: Case I; Top Right: Case
II; Bottom Left: case III; Bottom Right: Case IV

Remark 5.2. The comparison shows that our iterative processes (3.9) con-
verges faster than the iterative processes (1.1), (1.2) and consequently con-
verges faster than some existing iterative schemes in the literature.
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6. Conclusion and open problem

In this work, we present some fixed point results for a general class of nonex-
pansive mappings and also proposed a new iterative scheme for approximating
the fixed point of this class of mappings in the frame work of uniformly convex
Banach spaces. Our numerical experiment shows that our iterative method
is better compare to some existing iterative methods in the literature. In
addition, we gave the definition of a generalized (α, β)-nonexpansive type 1
mapping, and generalized (α, β)-nonexpansive type 2 mapping, we established
some results for the type 1 mapping but not for type 2. In the light of this,
we leave the type 2 mapping as an open problem for interested researchers in
this area to explore.
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