References
- J. Aramayona, Simplicial embeddings between pants graphs, Geom. Dedicata 144 (2010), 115-128. https://doi.org/10.1007/s10711-009-9391-0
- J. Aramayona, T. Koberda, and H. Parlier, Injective maps between flip graphs, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 5, 2037-2055. http://aif.cedram.org/item?id=AIF_2015__65_5_2037_0 https://doi.org/10.5802/aif.2981
- J. Aramayona, C. Lecuire, H. Parlier, and K. J. Shackleton, Convexity of strata in diagonal pants graphs of surfaces, Publ. Mat. 57 (2013), no. 1, 219-237. https://doi.org/10.5565/PUBLMAT_57113_08
- J. Aramayona, H. Parlier, and K. J. Shackleton, Totally geodesic subgraphs of the pants complex, Math. Res. Lett. 15 (2008), no. 2, 309-320. https://doi.org/10.4310/MRL.2008.v15.n2.a9
- J. Aramayona, H. Parlier, and K. J. Shackleton, Constructing convex planes in the pants complex, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3523-3531. https://doi.org/10.1090/S0002-9939-09-09907-9
- J. Aramayona and J. Souto, Homomorphisms between mapping class groups, Geom. Topol. 16 (2012), no. 4, 2285-2341. https://doi.org/10.2140/gt.2012.16.2285
- J. F. Brock, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003), no. 3, 495-535. https://doi.org/10.1090/S0894-0347-03-00424-7
- V. Disarlo, Combinatorial rigidity of arc complexes, preprint.
- V. Disarlo and H. Parlier, The geometry of flip graphs and mapping class groups, Trans. Amer. Math. Soc. 372 (2019), no. 6, 3809-3844. https://doi.org/10.1090/tran/7356
- V. Erlandsson and F. Fanoni, Simplicial embeddings between multicurve graphs, Michigan Math. J. 66 (2017), no. 3, 549-567. https://doi.org/10.1307/mmj/1496995339
- E. Irmak and J. D. McCarthy, Injective simplicial maps of the arc complex, Turkish J. Math. 34 (2010), no. 3, 339-354.
- M. Korkmaz and A. Papadopoulos, On the ideal triangulation graph of a punctured surface, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 4, 1367-1382. https://doi.org/10.5802/aif.2725
- S. J. Taylor and A. Zupan, Products of Farey graphs are totally geodesic in the pants graph, J. Topol. Anal. 8 (2016), no. 2, 287-311. https://doi.org/10.1142/S1793525316500096
- S. A. Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom. 25 (1987), no. 2, 275-296. http://projecteuclid.org/euclid.jdg/1214440853 https://doi.org/10.4310/jdg/1214440853