• Title/Summary/Keyword: Convex map

Search Result 94, Processing Time 0.021 seconds

THE PROXIMAL POINT ALGORITHM IN UNIFORMLY CONVEX METRIC SPACES

  • Choi, Byoung Jin;Ji, Un Cig
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.845-855
    • /
    • 2016
  • We introduce the proximal point algorithm in a p-uniformly convex metric space. We first introduce the notion of p-resolvent map in a p-uniformly convex metric space as a generalization of the Moreau-Yosida resolvent in a CAT(0)-space, and then we secondly prove the convergence of the proximal point algorithm by the p-resolvent map in a p-uniformly convex metric space.

FIXED POINTS OF BETTER ADMISSIBLE MAPS ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.885-899
    • /
    • 2000
  • We obtain generalized versions of the Fan-Browder fixed point theorem for G-convex spaces. We define the class B of better admissible multimaps on G-convex spaces and show that any closed compact map in b fro ma locally G-convex uniform space into itself has a fixed point.

  • PDF

ELEMENTS OF THE KKM THEORY ON CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.1-27
    • /
    • 2008
  • We introduce a new concept of convex spaces and a multimap class K having certain KKM property. From a basic KKM type theorem for a K-map defined on an convex space without any topology, we deduce ten equivalent formulations of the theorem. As applications of the equivalents, in the frame of convex topological spaces, we obtain Fan-Browder type fixed point theorems, almost fixed point theorems for multimaps, mutual relations between the map classes K and B, variational inequalities, the von Neumann type minimax theorems, and the Nash equilibrium theorems.

COLLECTIVE FIXED POINTS FOR GENERALIZED CONDENSING MAPS IN ABSTRACT CONVEX UNIFORM SPACES

  • Kim, Hoonjoo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we present a fixed point theorem for a family of generalized condensing multimaps which have ranges of the Zima-Hadžić type in Hausdorff KKM uniform spaces. It extends Himmelberg et al. type fixed point theorem. As applications, we obtain some new collective fixed point theorems for various type generalized condensing multimaps in abstract convex uniform spaces.

FIXED POINT THEOREMS, SECTION PROPERTIES AND MINIMAX INEQUALITIES ON K-G-CONVEX SPACES

  • Balaj, Mircea
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.387-395
    • /
    • 2002
  • In [11] Kim obtained fixed point theorems for maps defined on some “locally G-convex”subsets of a generalized convex space. Theorem 2 in Kim's article determines us to introduce, in this paper, the notion of K-G-convex space. In this framework we obtain fixed point theorems, section properties and minimax inequalities.

GENERALIZATIONS OF THE NASH EQUILIBRIUM THEOREM ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.697-709
    • /
    • 2001
  • Generalized forms of the von neumann-Sion type minimax theorem, the Fan-Ma intersection theorem, the Fan-a type analytic alternative, and the Nash-Ma equilibrium theorem hold for generalized convex spaces without having any linear structure.

  • PDF

STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES

  • LEE, BYUNG-SOO
    • The Pure and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.185-197
    • /
    • 2015
  • The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(fn)-Lipschitzian map- pings and an infinite family of gn-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces [1, 3, 9, 16, 18, 19] and convex cone metric spaces [8].

FIXED POINT THEOREMS FOR MӦNCH TYPE MAPS IN ABSTRACT CONVEX UNIFORM SPACES

  • Kim, Hoonjoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.345-353
    • /
    • 2021
  • In this paper, first, we present new fixed point theorems for Mönch type multimaps on abstract convex uniform spaces and, also, a fixed point theorem for Mönch type multimaps in Hausdorff KKM L𝚪-spaces. Second, we show that Mönch type multimaps in the better admissible class defined on an L𝚪-space have fixed point properties whenever their ranges are Klee approximable. Finally, we obtain fixed point theorems on 𝔎ℭ-maps whose ranges are 𝚽-sets.