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FIXED POINTS OF BETTER ADMISSIBLE MAPS
ON GENERALIZED CONVEX SPACES

SEHIE PARK

ABSTRACT. We obtain generalized versions of the Fan-Browder
fixed point theorem for G-convex spaces. We define the class B
of better admissible multimaps on G-convex spaces and show that
any closed compact map in B from a locally -convex uniform space
into itself has a fixed point.

1. Introduction

In 1991, the author [11] showed that any compact acyclic multimap
from a nonempty convex subset of a locally convex Hausdorff topolog-
ical vector space into itself has a fixed point, where an acyclic mul-
timap is an upper semicontinuous map with compact acyclic values.
This result generalizes historically well-known fixed point theorems due
to Brouwer, Schauder, Tychonoff, Kakutani, Bohnenblust and Karlin,
Fan, Glicksberg, Hukuhara, Himmelberg, and others. Note that all of
those authors were concerned with single-valued maps or convex-valued
multimaps. For the literature, see {11, 12, 21].

Since then the theorem is extended further in several directions in
the framework of topological vector spaces. The main trend of these
extensions is to show that the theorem holds for more general mul-
timaps than acyclic ones and for topological vector spaces not neces-
sarily locally convex. In fact, the author [13-15] showed that any closed
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compact multimap in the “better” admissible class 8 from an admis-
sible {in the sense of Klee) convex subset of a Hausdorfl topological
vector space into itself has a fixed point.

Along with the above development, many features of the concept of
convex sets are extended to some general convexities; for example, con-
vex spaces of Lassonde, C-spaces of Horvath, and some others due to
Pasicki, Komiya, Bielawski, Jo6, and others. These general convexities
are all subsumed to the concept of G-convex spaces due to the author;
see [16-31). Moreover, there have appeared a number of fixed point
theorems for multimaps in the framework of such general convexities;
for example, Horvath [5, 6], Tarafdar [34], Tan and Zhang [33], Kim
[7], Yuan [35], Ben-El-Mechaiekh et al. [1], Park [19-24], and others.

In this paper, firstly, we obtain generalized versions of the Fan-
Browder fixed point theorem for G-convex spaces. Secondly, we ex-
tend the class ‘B of better admissible multimaps to G-convex spaces
and show that any closed compact map in 8 from a locally G-convex
uniform space into itself has a fixed point. Some related results and
several consequences of our main results are added.

2. G-convex spaces

A multimap or map F : X — Y is a function from X into the power
set of Y with values F(z) for £ € X and fibers F - (y)={z € X :z €
F(y)} for y € Y. For topological spaces X and Y, amap F: X — Y
is closed if its graph Gr(F) = {(z,y) : z € X, y € F(z)} is closed and
compact if its range F(X) = {y € Y : y € F(z) for some ¢ € X} is
contained in a compact subset of V.

A generalized conver space or a G-convex space (X, D;T") consists
of a topological space X and a nonempty set D such that for each
A ={ag,a1, - ,an} C D with the cardinality |A| = n + 1, there exist
a subset I'(A) of X and a continuous function ¢4 : A, — I'(A} such
that J C {0,1,- ,n} implies pa(A,;) C T'({a; : j € J}), where A, is
an n-simplex with vertices vg,v1, -+ ,v, and Ay = co{v; : j € J}.

Let, (D) denote the set of all nonempty finite subsets of ). We may
write I'4 := I'(A) for each A € (D) and (X;T') := (X, X;T'). In case
D C X in a G-convex space (X, D;T'), a subset C of X is said to be
I'-convez if for each A € (D), A € C implies 'y C C. For details on
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G-convex spaces, see [16-24, 26-31], where basic theory was extensively
developed.

There are a lot of examples of G-convex spaces:

ExaMmpPLES 2.1. If X is a convex subset of a vector space, D C X,
and each ['4 iz the convex hull of A € (D} equipped with the Euclidean
topology, then (X, D;I'}) becomes a conver space generalizing the one
due to Lassonde. Note that any convex subset of a topological vector
space is a convex space, but not conversely.

ExamPLESs 2.2. If X = D and I'; is assumed to be contractible
or, more generally, infinitely connected (that is, n-connected for all
n > 0), and if for each A, B € (X}, A C B implies 'y ¢ I'p, then
(X;T') becomes a C-space (or an H-space) due to Horvath {3, 6]; see
also [25].

ExamPLES 2.3. For other major examples of G-convex spaces are
metric spaces with Michael’s convex structure, Pasicki’s S-contractible
spaces, Horvath’s pseudoconvex spaces, Komiya’s convex spaces, Biela-
wski’s simplicial convexities, Jod’s pseudoconvex spaces, and so on.
For the literature, see [26-29]. Recently, further examples of G-convex
spaces were given by the author [18] as follows: L-spaces and B'-
simplicial convexity of Ben-El-Mechaiekh et al. [1], continuous images
of G-convex spaces, Verma's or Stachd’s generalized H-spaces, Kulpa’s
simplicial structures, P ;-spaces of Forgo and Jod, me-spaces of Llinares,
hypeconvex metric spaces due to Aronszajn and Panitchpakdi, and
Takahashi’s convexity in metric spaces.

ExXAMPLES 2.4. Any hyperbolic space X in the sense of Kirk (8]
and Reich-Shafrir {32] is a G-convex space, since the closed convex
hull of any A € (X) is contractible [32, p.542]). This class of metric
spaces contains all normed vector spaces, all Hadamard manifolds, the
Hilbert ball with the hyperbolic metric, and others. Note that an
arbitrary product of hyperbolic spaces is also hyperbolic; see [32].

Now, we introduce a KKM theorem for G-convex spaces.

For a G-convex space (X, D;I"), a multimap F : D —o X is called a
KKM mapif I' 4 C F(A} for each A € (D).

The following is known [22-24, 28, 29
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THEOREM 0. Let (X, D;I') be a G-convex space and F : D — X a
multimap with closed [resp. open] values. Suppose that F is a KKM
map. Then

(i) {F(z)}:ep has the finite intersection property; and
(i) if(,en F(2) is contained in a compact subset K of X for some

N € (D), then we have [, F(z) # 0.

3. The -maps on G-convex spaces

For any topological space ¥ and a G-convex space (X, D;TI"}, a map
T:E — X is called a ®-map if there exists a map § : E — D such
that

(i) foreach y € E, M € (S(y)} implies T"yy ¢ T(y); and

(i) E={Int S (z):z € D}.

The coneept of ®-maps is originated from Horvath [5] and motivated
by the works of Fan and Browder; see (2, 12, 21].

From the KKM Theorem 0, we obtain our main result in this section:
THEOREM 3.1. Let (X, D;I'} be a G-convex space, and § : D —o
X, T: X — X multimaps. Suppose that
(1.1) S{(z)} is open [resp. closed| for each z € D;
(1.2) foreachy € X, M € (S~ (y)) implies T3y C T~ (y); and
(1.3) X = S(N) for some N € (D).
Then T has a fixed point ©o € X; that is, o € T(z0)-

Proof. Define a map F : D — X by F(z) := X\S(z) for z € D.
Then each F(z) is closed [resp. open] by (1.1). Moreover, we have

N Fle)=x\|) S(z)=xX\X =0

zeN zEN

by (1.3). Therefore, the family {F(z)}.cp does not have the finite
intersection property, and hence, F is not a KKM map by Theorem 0.
Thus, there exists an M € (D) such that I'ys ¢ F(M) = {J{X\S(z) :
z € M}. Hence, there exists an z¢ € I'ar such that zp € S(2) or
2 € 87 (xg) for all z € M; that is, M € (S5 (z0)). Therefore. we have
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Ty C T (zo) by (1.2) and hence, xg € I'py © T (zg). This implies
zg € T{xg) and completes our proof. 0

REMARKS 1. It is easy to reformulate Theorem 3.1 for a ®-map
T:X —-X.
2. Note that (1.2} generalizes the following:
(1.2) S~(y}Cc T {y) and T~ (y) is I-convex for each y € X when-
ever D C X,

3. In Theorem 3.1, condition (1.3) can be replaced by the following
without affecting the conclusion:

(1.3)" there exists an A € (D) such that S~(y) N A # 0 for each
ye X.

In fact, if for each y € X, there exists a z € A such that z € S™(y) or
y € 8(z), then X = §(A). Therefore, (1.3) implies (1.3).

We give some consequences of Theorem 3.1 for the case when S has
open values:

COROLLARY 3.2. Let (X, D;T") be a G-convex space, and §: D —o
X, T : X — X multimaps. Suppose that

(2.1) S(2) is open for each z € D;
(2.2) foreachy € X, M € (S~ (y)) implies T'yy C T~ (y); and
(2.3) one of the following holds:
(i) X is compact.
(i) X\S(M) is compact for some M € (D).
Then either

(a) there exists an xo € X such that S~ (z¢) = 8; or
(b) T has a fixed point x; € X.

Proof. Suppose that, contrary to (a), S (z) # 0 for all z € X.
Then X ={ }{S(2) : z € D} and hence, we have the following:
Case (i). The compact set X is covered by a finite number of S(z)’s.
Case (ii). The compact set X\S(M} is covered by a finite number
of S(z)’s.
Note that (i) = (ii) = (1.3). Therefore, by Theorem 3.1, T has
a fixed point. U

REMARK. Particular forms of Corollary 3.2 were applied in [33] to
equilibrium existence theorems for qualitative games and for general-
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ized games as well as to the existence theorem for loose saddle points
on G-convex spaces.

COROLLARY 3.3. Let (X, D;T) be a G-convex space, and S: D —o
X, T : X — X multimaps. Suppose that
(3.1) X = {Int S(z) : z € D};
(3.2) foreachy € X, M € (S (y)) impliesT'ys C T~ (y); and
(3.3) X\ U{Int S(2) : z € M} is compact for some M € (D).

Then T has a fixed point g € X.

Proof. Consider the map Int S : D — X instead of S in Corollary
3.2. Note that, for each y € X, by (3.2},

M € ((Int §)™ (y)) € (7 (y)) implies Tpr CT7 (),

and hence (2.2) holds. Moreover, by (3.1), for each z € X, we have a
z € D such that z € Int S(z) C S(z), and hence S™(z) # 0. Therefore,
the conclusion (a) of Corollary 3.2 can not occur, and hence, we have
the conclusion. d

Corollaries 3.2 and 3.3 have a lot of variations. One of the simplest
forms is the following:

CoROLLARY 3.4. Let (X;I') be a compact G-convex space and
T:X — X a map such that

(4.1) T(z) is nonempty I'-convex for each z € X; and
(4.2) T~ (y) is open for each y € X.

Then T has a fixed point.

Proof Put X = D in Theorem 3.1 and consider (T, T) instead of
(8=,T~). Then (1.1) and (1.2} follows from (4.2} and (4.1), respec-
tively. Since for each z € X, by (4.1) there exists a y € X such that
y € T(z) or x € T (y), X is covered by open sets T~ (y). Since X is
compact, we have X = T (N) for some N € (X). This implies the
validity of (1.3). Therefore, by Theorem 3.1, we have an xo € X such
that g € T {zg). This completes our proof. a

For the case when X itself is a compact convex subset of a topological
vector space, Corollary 3.4 reduces to the Fan-Browder fixed point
theorem due to Browder [2].
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Only one of the simplest forms of Theorem 3.1 for the case S has
closed values is known as follows; see Park [16]:

COROLLARY 3.5. Let (X;T') be a G-convex space and T : X — X
a map such that
(5.1} T(x) is P-convex for each r € X;
(6.2} T~ (y) is closed for each y € X; and
(5.3) there exists an A € (X} such that T(z)NA # 0 foreachz € X.

Then T has a fixed point.

Proof. Put X = D and replace (S,T) by (T~,7T ) in Theorem 3.1
with condition (1.3) instead of (1.3). O

The following is given in [26] implicitly and in [16, 17] explicitly:

LEMMA 3.6. Let K be a Hausdorff compact space, (X, D;T") a G-
convex space, and T : K — X a ®-map. Then T has a continuous
selection f : K — X thatis, f(y) € T(y) for ally € K. More precisely,
there exist two continuous functions p: K — A, and ¢n : A, - 'y
such that f = ¢y op for some N € (D) with |[N|=n+ 1.

4. Better admissible multimaps

Let (X, D;T) be a G-convex space and Y a topological space. We
define the better admissible class B of multimaps from X into Y as
follows:

FeB(X,Y) <= F:X —Y is a map such that for any N € (D)
with |N| = n + 1 and any continuous map p : F(['y) — A,, the
composition

F|
An 2Ty RP(TN) P A,
has a fixed point.
We give some subclasses of B as follows:

EXAMPLES 4.1. For topological spaces X and Y, an admaissible
class A%{X,Y) of maps ¥ : X —o Y is one such that, for each F
and each nonempty compact subset K of X, there exists a map G €
A(K,Y) satisfying Gz C Fz for all € K; where .. consists of finite
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compositions of maps in a class 2 of maps satisfying the following
properties:

(1) 2 contains the class C of (single-valued} continuous functions;
(it) each T € 2, is upper semicontinuous (u.s.c.} with nonempty
compact values; and
(iii) for any polytope P, each T € (P, P) has a fixed point, where
the intermediate spaces are suitably chosen.
Here, a polytope P is a homeomorphic image of a standard simplex.
There are lots of examples of 2 and £; see [12-15, 25-28].
Note that for a G-convex space (X, D;T') and any space Y, an ad-
missible class A¥(X,Y) is a subclass of B(X,Y) and that a ®-map
T:Y —o X belongs to CZ(Y, X) if Y is Hausdorff, by Lemma 3.6.

EXAMPLES 4.2. For a convex space (X, D;I'), where I' = co and
¢n is 2 homeomorphism, the class B(X,Y) is originally given in [13]
and investigated in [14, 15].

ExaMPLES 4.3. For a convex space X and a topological space Y,
Chang and Yen [3]| defined the class of maps T' : X — Y having the
KKM property as follows:

T € R(X,Y) < the family {S(z) : £ € X} has the finite intersec-
tion property whenever S : X — Y has closed values and T(coN) C
S(N) for.each N € (X).

For a convex space X and a Hausdorfl space Y, it is known that
AHX,Y) C R(X,Y) and we observed that two subclasses B and £
coincide in the class of all closed compact maps T : X — Y [13].

Generalizations of the class R to G-convex spaces are possible; see
[10].

ExAMPLES 4.4. Recently, Ben-El-Mechaiekh et al. [1] introduced
the class A{X,Y) of approachable maps ¥ : X — Y for uniformizable
spaces X and Y. It is shown that if (X, D;T") is a G-convex uniform
space with D C X and Y is a uniform space, then any closed compact
map F € A(X,Y) belongs to B(X,Y), see [19, Lemma 3|. It is known
that for a compact uniform space X and a G-convex uniform space
(Y,D;I') with D C X, every us.c. map F : X — Y with nonempty
I-convex values is approachable; see {1, Proposition 3.9]. Therefore,
we have the following:
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LeEmMMA 4.5. Let (X, D;T’) be a G-convex uniforin space with D C
X. Then any us.c. map F : X —o X with nonempty closed I'-convex
values belongs to B(X, X).

Here we have the following important fact:

REMARK. The basic coincidence theorem in [26, 27, Theorem 1]
holds for any closed compact map F' € B(X,Y) instead of F' ¢ AX
(X,Y). Therefore, many of the author’s works on the admissible class
A% may hold for the closed compact maps in the “better” admissible
class B.

For a particular type of G-convex spaces, we can establish fixed
point theorems for the class 'B.

A G-convex space (X, D;T') is a ®-space if X is a separated uniform
space and for each entourage V there is a &-map T : X - X such
that Gr(T") C V. This concept is originated from Horvath (5|, where a
number of examples are given.

The following is our main result in this section:

THEOREM 4.6. Let (X, D;I') be a ®-space and F € B(X,X). If F
is closed and compact, then F' has a fixed point.

Proof. Let V = {V)}xer be a basis of the separated uniform struc-
ture of X. Let K := F(X) be the closure of the range of F. Since
(X,D;T") is a ®-space, for each A € I, there is a ®-map T, : X — X
such that Gr(T)) C Vi. Since K is compact, by Lemma 3.6, T)|x
has a continuous selection fy : K — I'y for some N € (D) such that
fr = on op, where p=py : K — A,, is a continuous function. Since
F € B(X, K), the composition

F
An BTy = F(Tw) C K -2 A
has a fixed point ax € A,; that is, ax € (pe F o ¢n)(ar). Hence,
zx = ¢nlar) € (pv opo FHza) = (fa o F){za)

and there exists a y) € F(z,) C K such that zx = fia(yn) € Thlyn);
that is, (zx,y2) € Gr(T)) € V. Therefore

(xr,yrn) EVVNGI(F) C X X K.
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Since K is compact, we may assume that {yx}scs converges to some
zo € K. Since {zx,yx) € Vi for all A € I, {zs}rer also converges
to zg € K. Since F is closed and (zy,yx) € Gr(F'), we should have
(zg, x0) € Gr{F). Therefore, F has a fixed point zp € F(X)C K. O

Particular forms of Theorem 4.6 were known by Horvath [5] and
Park and Kim [25]. More recently, Ben-El-Mechaiekh et al. [1, Theo-
rem {4.2)] obtained a particular form of Theorem 4.6 for approachable
multimaps; see [19].

In view of Lemma 4.5 and Theorem 4.6, we have the following:

COROLLARY 4.7. Let (X, D;I") be a ®-space with D C X. Then
any compact u.s.c. map F : X —o X with nonempty closed I'-convex
values has a fixed point.

Note that Corollary 4.7 extends [19, Theorem 4.
For a non-closed map, we have the following:

THEOREM 4.8. Let (X, D;T') be a ®-space and F' € (X, X). If
F is compact, then F' has a fixed point.

Proof. As in the proof of Theorem 4.8, for each V), we have the
composition
PN Firy r
A, —TITn — FIn)CK > A,

Since L := ¢ (A,,) is a compact subset of X and F' € A(X, X), there
exists a map G € A (L, X) satisfying G{x) C F(z) for all x € L. Since
¢n and p are continuous, we have

po G o qu = QlC(Ana An)
and it has a fixed point ay € A,; that is, ay € (poGogn)(ar). Hence,
zx = pn(an) € (dy opo G)(za) = (fr o G)(za)

and there exists a y) € G(z)) C F(zx) C K such that z) = fays) €
Th(yx); that is, (za,ya) € Gr(T)\) C V. Therefore

(zx,yn) € VNGr{G) C L x K.

Note that G € U.(L,K) and hence G has closed graph. Then, as
in the proof of Theorem 4.6, there exists an (zg,zo) € Gr(G). Since
Gr{G) C Gr{F), F has a fixed point zp € K. 0
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5. Some consequences

In this section, we give some consequences of Theorem 4.6.
A locally G-convex uniform space is a G-convex space (X, D;I'} such
that

(1) X is a separated uniform space with the basis V for symmetric
entourages;

(2) D is a dense subset of X; and

(3) foreach V€V andeachz € X,

Vizsi={2' e X : (z,2") e V}

is I'-convex.

Particular types of locally G-convex uniform spaces are treated re-
cently by Yuan [35).

LEMMA 5.1. A locally G-convex uniform space (X, D;T") is a ®-
space.

Proof. Let {Vi}aecs be an (open) basis of the uniform structure of
(X,D;T). Foreach A€ I, define T : X =X and S5, : X — D by

Ta(z) :={y € X : (z,y) € i)}

and
Saz)={y€ D:(x,y) € Vh}

for x € X. Since D is dense in X, for each ¢ € X, ther is a y € D such
that (x,y} € Vy; hence

z € S5 (v) =Ty ()-

Since T, (y) is open, we have X = [J{Int S} (y) : y € D}. Moreover,
for each z € X, if M € (S)\(z)) C D, then by (3)

Py C{yeX:(z,y) € Va} = Ta(x).

Therefore S5 and T satisfy conditions (i) and {ii) of the definition of
a ®¢-map. U
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From Lemma 5.1 and Theorem 4.6, we have the following:

THEOREM 5.2. Let (X, D;T') be a locally G-convex uniform space.
Then any closed compact map F € B(X, X) has a fixed point.

For acyclic maps, Yuan [35] obtained a particular form of Theo-
rem 5.2 for particular types of locally G-convex spaces. For single-
valued continuous maps on locally G-convex metrizable spaces, par-
ticular forms of Theorem 5.2 are due to Rassias, Park, Park-Kim (see
[25]), and Kulpa [9].

A G-convex space (X, D;T') is called an LG-space if X is a separated
uniform space such that D is a dense subset of X and if there exists
a basis V for the symmetric entourages such that for each V € V,
VIC] :={z € X : CNnVI[z] # 0} is [-convex whenever C C X is
P-convex.

For a C-space (X;T'), the concept of LG-spaces reduces to that of
LC-spaces due to Horvath [5, 6} {which are called locally H-convex
spaces by Tarafdar [34]).

LEMMA 5.3. Every LG-space (X,D;T') is a locally G-convex uni-
form space if I'(,y = {z} for each x € D.

Proof. For each basis element V of the uniformity and each = € D,
Vigl={' € X : (z,2") e V}
={z’eX:zeV [}
={z' € X : {z}nV~[z] # 0}.

Since {z} is [-convex and (X, D;T') is an LG-space, V[z] is I'-convex.
This completes our proof. O

From Lemma 5.3 and Theorem 4.6, we have the following:

THEOREM 5.4. Let (X, D;T) be an LG-space such that ['gz) = {x}
for each z € D. Then any closed compact map F € B(X, X) has a
fixed point.

In view of Lemma 4.5, Theorem 5.4 holds for an u.s.c. map with
nonempty closed I'-convex values. This fact was established by Ben-
El-Mechaiekh et al. {1, Corollary 4.7 for a particular case of a para-
compact LC-space (X; ).
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Any nonempty convex subset X of a locally convex Hausdorff topo-
logical vector space {l.c.s.) E is an obvious example of an LC-space
(X;T) with T'4 = co A for A € (X). For other examples of LC-spaces,
see |5, 6, 34].

From Theorem 4.6 or Theorem 5.4, we immediately have

THEOREM 5.5 [13, Theorem 5]. Let X be a nonempty convex subset
of a Le.s. Then any closed compact map F € B(X, X) has a fixed
point.

Note that Theorem 5.5 extends and unifies a large number of his-
torically well-known fixed point theorems on l.c.s.; see [13-15].

A G-convex space (X;I") is called an LG-metric space if X is equip-
ped with a metric d such that for any £ > 0, the set {x € X : d{x,C) <
£} is T-convex whenever C' C X is [-convex and open balls are I'-
convex. This concept generalizes that of LC-metric spaces due to Hor-
vath [5], who gave a number of examples.

In our previous work [20], we obtained several results on fixed points
of lower semicontinuous multimaps on complete LC-metric spa-
ces.

Note that the hyperconvex metric spaces due to Aronszajn and Pan-
itchpakdi in 1959 are LC-metric spaces, and hence some of the results
in this paper are applicable to hyperconvex metric spaces; see [19].

Finally, in this section, we were mainly concerned with consequences
of Theorem 4.6 and some further consequences can be found in [19].
Similarly, we can obtain consequences of Theorem 5.4 generalizing some
of known fixed point theorems due to the author; see [11-19].
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