• Title/Summary/Keyword: Converter circuits

Search Result 471, Processing Time 0.025 seconds

The Development of Jumping Ring with Sensor System and Design of Dynamic Neural Controller (점핑링 및 센서 시스템 개발과 동적 신경망 제어기 설계)

  • Park, Seong-Wook;Kwon, Ki-Jin;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.540-542
    • /
    • 1999
  • We develop jumping ring system with sensor and control system using dynamic neural networks. Jumping ring, sensor and control system are controlled by 586 PC using Turbo C program. Sensor system is composed of 20 optical sensors and encoder. The control circuits are consisted of thyristor, FET and phase controller. A/D converter and optical sensor acquire real time motion data of the jumping ring system. The information of acquired jumping ring Position is estimated by using dynamic neural networks. Estimated control signals are sent to control circuits and D/A converter to track desired position of the jumping ring system. Experiment results are given to verify that proposed dynamic controller is useful in real jumping ring system.

  • PDF

The Stabilized Flyback Converter Design for Lighting Control System (경관조명용 플라이백 컨버터의 안정화 설계)

  • Lim, Seong-Jin;Kim, Chang-Sun;You, Jin-Ho;Cheon, Seung-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.9-10
    • /
    • 2010
  • The lighting control power circuits should be designed in stable region according to the environment. A stable circuit is analyzed using ac equivalent circuits. The flyback converter with wide input voltage ranges is suitable for lighting control system. It is designed optimally for stability. The specifications are that the input voltage is 90V-230V, the output power is 12V/2.5A. The stability analysis is established using PSM(Phase Sensitive Multimeter) in experiment. As a result, it is confirmed that the gain margin and the phase margin are in stable area. The validity of the experimental measurement is verified.

  • PDF

Integrated DC-DC Converter Based Energy Recovery Sustainer Circuit for AC-PDP

  • Park, Jae-Sung;Shin, Yong-Saeng;Hong, Sung-Soo;Han, Sang-Kyoo;Roh, Chung-Wook
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.878-885
    • /
    • 2012
  • A new sustainer with primary-side integration of DC/DC converters and energy recovery(SPIDER) circuits is proposed. The proposed circuit operates as a DC-DC converter during address period and energy recovery circuit during sustain period. Therefore, the conventional three electronic circuits composed of the power supply, X-driver, and Y-driver can be reduced to one circuit. As a result, it has desirable advantages such as a simple structure, less mass, fewer devices and cost reduction. Moreover, since the Zero Voltage Switching (ZVS) of all power switches can be guaranteed, a switching loss can be considerably decreased. To confirm the operation, validity, and features of the proposed circuit, experimental results from a prototype for 42-inch PDP are presented.

LLC Resonant Converter with Two Transformers and Resonant Tanks (두개의 변압기와 공진 탱크로 구성된 LLC 공진 컨버터)

  • Kim, Joo-Hoon;Kang, Sung-In;Kim, Eun-Soo;Jun, Yong-Suk;Lee, Jae-Sam;Huh, Dong-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.406-414
    • /
    • 2009
  • To cope with the high power density and low cost in switching power supply, LLC resonant converters with the two resonant tank circuits composed of resonance capacitors and two transformers are proposed in this paper. Each transformers used for the proposed resonant circuits are parallel connected in the primary and series connected in the secondary to reduce the current unbalance. The proposed LLC resonant converters are described and verified on 300W experimental prototype.

Discrete Time Domain Modeling and Controller Design of Phase Shifted Full Bridge PWM Converter (위상천이 풀-브릿지 PWM 컨버터의 이산 시간 모델링 및 제어기 설계)

  • Lim, Jeong-Gyu;Lim, Soo-Hyun;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.135-137
    • /
    • 2007
  • A phase shifted full-bridge PWM converter (PSFBC) has been used as the most popular topology for many applications. But, for the reasons of the cost and performance, the control circuits for the PSFBC have generally been implemented using analog circuits. The studies on the digital control of the PSFBC were recently presented. However, they considered only the digital implementation of the analog controller. This paper presents the modeling and design of the digital controller for the PSFBC in the discrete time domain. The discretized PSFBC model is first derived considering the sampling effect. Based on this model, the digital controller is directly designed in discrete time domain. The simulation and experimental results are provided to verify the proposed modeling and controller design.

  • PDF

An Analysis of RF-DC Converter Circuits with GaN Schottky Barrier Diodes (GaN-SBD를 이용한 RF-DC 변환기 회로 분석)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.68-71
    • /
    • 2021
  • In this paper, GaN-SBD devices with excellent breakdown voltage and frequency characteristics for use in high-power microwave wireless power transmission has been modeled for PSpice circuit simulation. The RF-DC conversion circuits were simulated and compared with a commercial Si-SBD device. Although the modeled GaN-SBD devices had lower RF-DC conversion efficiency compared to Si-SBD at 2.4 and 5.8 GHz, it was confirmed through PSpice circuit simulations that they can be used sufficiently according to the required application circuit in a high power situation.

통신위성 전력제어 및 분배장치 설계 및 해석

  • Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.108-116
    • /
    • 2003
  • This research presents the design and analysis of PCDU(Power Control & Distribution Unit) of communication satellite. The PCDU of a spacecraft must provide adequate power to each subsystem and payload during mission life, and it also needs high reliability and performance in space environment. A control circuit of the PCDU include bus sensing and filter circuits, error signal amplification circuit, error compensation circuit of SAS(Shunt Assembly Switch) and BPC(Battery Power Converter). The phase margin and DC gain for the designed circuits are analyzed through the frequency response characteristics of the compensated control circuit. And also the transfer function of the battery power converter circuit are discussed at the battery CCCM(Charge Continuous Conduction Mode) and battery C/DCCM(Continuous/Discontinuous Conduction Mode).

  • PDF

Novel Single Switch DC-DC Converter for High Step-Up Conversion Ratio

  • Hu, Xuefeng;Gao, Benbao;Huang, Yuanyuan;Chen, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.662-671
    • /
    • 2018
  • This paper presents a new structure for a step up dc-dc converter, which has several advantageous features. Firstly, the input dc source and the clamped capacitor are connected in series to transfer energy to the load through dual voltage multiplier cells. Therefore, the proposed converter can produce a very high voltage and a high conversion efficiency. Secondly, a double voltage clamped circuit is introduced to the primary side of the coupled inductor. The energy of the leakage inductance of the coupled inductor is recycled and the inrush current problem of the clamped circuits can be shared equally by two synchronous clamped capacitors. Therefore, the voltage spike of the switch tube is solved and the current stress of the diode is reduced. Thirdly, dual voltage multiplier cells can absorb the leakage inductance energy of the secondary side of the coupled inductor to obtain a higher efficiency. Fourthly, the active switch turns on at almost zero current and the reverse-recovery problem of the diodes is alleviated due to the leakage inductance, which further improves the conversion efficiency. The operating principles and a steady-state analysis of the continuous, discontinuous and boundary conduction modes are discussed in detail. Finally, the validity of this topology is confirmed by experimental results.

New Single-stage Interleaved Totem-pole AC-DC Converter for Bidirectional On-board Charger

  • ;Kim, Sang-Jin;Kim, Byeong-U;Sin, Yang-Jin;Choe, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.192-194
    • /
    • 2018
  • In this paper a new single-stage ac-dc converter with high frequency isolation and low components count is introduced. The proposed converter is constructed using two interleaved boost circuits in the grid side and non-regulating full bridge in the DC side. An optimized switching is implemented on the two interleaved boost circuits resulting in a ripple-free grid current without a ripple cancellation network; hence very small filter inductors are used. A simple and reliable closed-loop control system is easily implemented, since the phase-shift angle is the only independent variable. Moreover, current imbalance is avoided in the presented topology without current control loop in each phase. The proposed charger charges the battery with a sinusoidal-like current instead of a constant direct current. ZVS turn on of all switches is achieved throughout the operation in both directions of power flow without any additional components.

  • PDF

A Novel buck boost chopper circuit having multi-load sharing characteristic (다중부하분할 특성을 지닌 새로운 승강압 초퍼회로)

  • Mun, S.P.;Suh, K.Y.;Lee, H.W.;Kim, J.Y.;Kim, Y.M.;Kim, C.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1534-1536
    • /
    • 2005
  • A DC-DC converter is being widely used for various household appliances and for industry applications. The DC-DC converter is powered from single battery, and the voltage is varied according to the purpose. In the vehicle, various accessories whose electric power is different are being used. Thus, plural number of DC-DC converter should be provided, so these situations bring complicated circuits, and accordingly, higher cost. Under such backgrounds, in this paper, we propose a novel buck-boost chopper circuit with simply configuration which can supply to two or more different output loads. The propose chewer circuit can control output voltages by controlling duty ratio by using typically two switching devices, which is composed by single boost-switch and single buck-switch. The output voltage can be controlled widely. A few modified circuits developed from the fundamental circuit are represented including the general multi-load circuit. And all this merits and appropriateness was proved by computer simulation and experience.

  • PDF