• Title/Summary/Keyword: Conversion circuit

Search Result 967, Processing Time 0.025 seconds

Design of Low Power 12Bit 80MHz CMOS D/A Converter using Pseudo-Segmentation Method (슈도-세그멘테이션 기법을 이용한 저 전력 12비트 80MHz CMOS D/A 변환기 설계)

  • Joo, Chan-Yang;Kim, Soo-Jae;Lee, Sang-Min;Kang, Jin-Ku;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.13-20
    • /
    • 2008
  • This paper describes the design of low power 12bit Digital-to-Analog Converter(D/A Converter) using Pseudo-Segmentation method which shows the conversion rate of 80MHz and the power supply of 1.8V with 0.18um CMOS n-well 1-poly 6-metal process for advanced wireless communication system. Pseudo-segmentation method used in binary decoder consists of simple parallel buffer is employed for low power because of simpler configuration than that of thermometer decoder. Also, using deglitch circuit and swing reduced drivel reduces a switching noise. The measurement results of the proposed low power 12bit 80MHz CMOS D/A Converter shows SFDR is 66.01dBc at sampling frequency 80MHz, input frequency 1MHz and ENOB is 10.67bit. Integral nonlinearity(INL) / Differential nonlinearity(DNL) have been measured ${\pm}1.6LSB/{\pm}1.2LSB$. Glich energy is measured $49pV{\cdot}s$. Power dissipation is 46.8mW at 80MHz(Maximum sampling frequency) at a 1.8V power supply.

A Study on the Mobile Communication System for the Ultra High Speed Communication Network (초고속 정보통신망을 위한 이동수신 시스템에 관한 연구)

  • Kim, Kab-Ki;Moon, Myung-Ho;Shin, Dong-Hun;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-14
    • /
    • 1998
  • In this paper, Antenna, LNA, Mixer, VCO, and Modulation/Demodulation in Baseband processor which are the RF main components in Wireless LAN system for ultra high-speed communications network are studied. Antenna bandwidth and selective fading due to multipath can be major obstacles in high speed digital communications. To solve this problem, wide band MSA which has loop-structure magnetic antenna characteristics is designed. Distributed mixer using dual-gate GaAs MESFET can achieve over 10dB LO/RF isolation without hybrid, and minimize circuit size. As linear mixing signal is produced, distortions can be decreased at baseband signals. Conversion gain is achieved by mixing and amplification simultaneously. Mixer is designed to have wide band characteristics using distributed amplifier. In VCO design, Oscillator design method by large signal analysis is used to produce stable signal. Modulation/Demodulation system in baseband processor, DS/SS technique which is robust against noise and interference is used to eliminate the effect of multipath propagation. DQPSK modulation technique with M-sequences for wideband PN spreading signals is adopted because of BER characteristic and high speed digital signal transmission.

  • PDF

Design and fabrication of the MMIC frequency doubler for 29 GHz local oscillator application (29GHz 국부 발진 신호용 MMIC 주파수 체배기의 설계 및 제작)

  • Kim, Jin-Sung;Lee, Seong-Dae;Lee, Bok-Hyoung;Kim, Sung-Chan;Sul, Woo-Suk;Lim, Byeong-Ok;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.63-70
    • /
    • 2001
  • We demonstrate the MMIC (monolithic microwave integrated circuit) frequency doublers generating stable and low-cost 29 GHz local oscillator signals from 14.5 GHz input signals. These devices were designed and fabricated by using the M MIC integration process of $0.1\;{\mu}m$ gate-length PHEMTs (pseudomorphic high electron mobility transistors) and passive components. The measurements showed S11 or -9.2 dB at 145 GHz, S22 of -18.6 dG at 29 GHz and a minimum conversion loss of 18.2 dB at 14.5 GHz with an input power or 6 dBm. Fundamental signal of 14.5 GHz were suppressed below 15.2 dBe compared to the second harmonic signal at the output port, and the isolation characteristics of fundamental signal between the input and the output port were maintained above :i0 dB in the frequency range 10.5 GHz to 18.5 GHz. The chip size of the fabricated MMIC frequency doubler is $1.5{\times}2.2\;mm^2$.

  • PDF

A Signal Readout System for CNT Sensor Arrays (CNT 센서 어레이를 위한 신호 검출 시스템)

  • Shin, Young-San;Wee, Jae-Kyung;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.31-39
    • /
    • 2011
  • In this paper, we propose a signal readout system with small area and low power consumption for CNT sensor arrays. The proposed system consists of signal readout circuitry, a digital controller, and UART I/O. The key components of the signal readout circuitry are 64 transimpedance amplifiers (TIA) and SAR-ADC with 11-bit resolution. The TIA adopts an active input current mirror (AICM) for voltage biasing and current amplification of a sensor. The proposed architecture can reduce area and power without sampling rate degradation because the 64 TIAs share a variable gain amplifier (VGA) which needs large area and high power due to resistive feedback. In addition, the SAR-ADC is designed for low power with modified algorithm where the operation of the lower bits can be skipped according to an input voltage level. The operation of ADC is controlled by a digital controller based on UART protocol. The data of ADC can be monitored on a computer terminal. The signal readout circuitry was designed with 0.13${\mu}m$ CMOS technology. It occupies the area of 0.173 $mm^2$ and consumes 77.06${\mu}W$ at the conversion rate of 640 samples/s. According to measurement, the linearity error is under 5.3% in the input sensing current range of 10nA - 10${\mu}A$. The UART I/O and the digital controller were designed with 0.18${\mu}m$ CMOS technology and their area is 0.251 $mm^2$.

An MMIC Doubly Balanced Resistive Mixer with a Compact IF Balun (소형 IF 발룬이 내장된 MMIC 이중 평형 저항성 혼합기)

  • Jeong, Jin-Cheol;Yom, In-Bok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1350-1359
    • /
    • 2008
  • This paper presents a wideband doubly balanced resistive mixer fabricated using $0.5{\mu}m$ GaAs p-HEMT process. Three baluns are employed in the mixer. LO and RF baluns operating over an 8 to 20 GHz range were implemented with Marchand baluns. In order to reduce chip size, the Marchand baluns were realized by the meandering multicoupled line and inductor lines were inserted to compensate for the meandering effect. IF balun was implemented through a DC-coupled differential amplifier. The size of IF balun is $0.3{\times}0.5\;mm^2$ and the measured amplitude and phase unbalances were less than 1 dB and $5^{\circ}$, respectively from DC to 7 GHz. The mixer is $1.7{\times}1.8\;mm^2$ in size, has a conversion loss of 5 to 11 dB, and an output third order intercept(OIP3) of +10 to +15 dBm at 16 dBm LO power for the operating bandwidth.

Highly Efficient 13.56 MHz, 300 Watt Class E Power Transmitter (13.56 MHz, 300 Watt 고효율 Class E 전력 송신기 설계)

  • Jeon, Jeong-Bae;Seo, Min-Cheol;Kim, Hyung-Chul;Kim, Min-Su;Jung, In-Oh;Choi, Jin-Sung;Yang, Youn-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.805-808
    • /
    • 2011
  • This paper presents a design of high-efficiency and high-power class E power transmitter. The transmitter is composed of 300 Watt class E power amplifier and AC-DC converter. The AC-DC converter converts 220 V and 60 Hz AC to a 290 V DC. The generated DC voltage is directly applied to a bias of the class E power amplifier. Because the converter does not have DC-DC converter unit, it has very high conversion efficiency of about 98.03 %. To minimize the loss at the output of the power amplifier, high-Q inductor was implemented and deployed to the output resonant circuit. As a result, the 13.56 MHz class E power amplifier has a high power-added efficiency of 84.2 % at the peak output power of 323.6 W. The overall efficiency of class E power transmitter, including the AC-DC converter, is as high as 82.87 %.

A Compact 20 W Block Up-Converter for C-Band Satellite Communication (C-대역 위성 통신용 20 W급 주파수 상향 변환기의 소형화)

  • Jang, Byung-Jun;Moon, Jun-Ho;Jang, Jin-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.352-361
    • /
    • 2010
  • In this paper, a compact 20 W block-up-converter for C-band satellite communication is designed and implemented. The designed block up-converter consists of an intermediate frequency circuit, a mixer and local oscillator, a driver amplifier, a solid-state power amplifier, waveguide circuits, and a power supply module. To reduce the size of the block-up-converter, all circuits are assembled within an housing, so its dimension is just $21{\times}14{\times}11cm^3$. Especially, the waveguide filter and microstirp-to-waveguide transition are easily implemented using an housing. Also, to meet spurious and harmonics specification, various compact microstrip filters including an elliptic filter are integrated. Measurement results show that the developed block up-converter has good electrical performances: the output power of 43.7 dBm, the minimum gain of 65 dB, the gain flatness of ${\pm}1.84$, the IMD3 of -35 dBc, and the harmonic level of -105 dBc.

Size-Reduced Ring-Hybrid Coupler Using Phase-Inverting Ultra-Wideband Transitions and Its Frequency Doubler Application (초광대역 위상 역전 전이 구조를 이용한 소형화된 링 하이브리드 결합기 및 주파수 체배기 응용)

  • Song, Sun-Young;Kim, Young-Gon;Park, Jin-Hyun;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1037-1044
    • /
    • 2010
  • In this paper, a new size-reduced, wideband ring-hybrid coupler is presented, and a design of a planar single-balanced doubler using the ring-hybrid is shown. This ring-hybrid coupler employs a pair of ultra-wideband transitions for phase inversion, which consists of in-phase and out of-phase transitions providing a good amplitude and phase balances for wide frequency ranges. The implemented ring-hybrid is 65 % smaller than conventional ring-hybrids, and provides 92.5 % and 81.3 % bandwidth at $\sum$ and $\Delta$ ports, respectively. Thanks to good amplitude and phase balances over wide bandwidth, the ring-hybrid can be applied to implement various balanced components. The implemented single-balanced doubler utilizing the ring-hybrid exhibits typical conversion loss of 10.5 dB for the output frequency range of 4~12 GHz with fundamental suppression level of 30 dB. The performance was also well-predicted with the nonlinear circuit simulation.

Effect of condensed tannins from Ficus infectoria and Psidium guajava leaf meal mixture on nutrient metabolism, methane emission and performance of lambs

  • Pathak, A.K.;Dutta, Narayan;Pattanaik, A.K.;Chaturvedi, V.B.;Sharma, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1702-1710
    • /
    • 2017
  • Objective: The study examined the effect of condensed tannins (CT) containing Ficus infectoria and Psidium guajava leaf meal mixture (LMM) supplementation on nutrient metabolism, methane emission and performance of lambs. Methods: Twenty four lambs of ~6 months age (average body weight $10.1{\pm}0.60kg$) were randomly divided into 4 dietary treatments (CT-0, CT-1, CT-1.5, and CT-2 containing 0, 1.0, 1.5, and 2.0 percent CT through LMM, respectively) consisting of 6 lambs each in a completely randomized design. All the lambs were offered a basal diet of wheat straw ad libitum, oat hay (100 g/d) along with required amount of concentrate mixture to meet their nutrient requirements for a period of 6 months. After 3 months of experimental feeding, a metabolism trial of 6 days duration was conducted on all 24 lambs to determine nutrient digestibility and nitrogen balance. Urinary excretion of purine derivatives and microbial protein synthesis were determined using high performance liquid chromatography. Respiration chamber study was started at the mid of 5th month of experimental feeding trial. Whole energy balance trials were conducted on individual lamb one after the other, in an open circuit respiration calorimeter. Results: Intake of dry matter and organic matter (g/d) was significantly (p<0.05) higher in CT-1.5 than control. Digestibility of various nutrients did not differ irrespective of treatments. Nitrogen retention and microbial nitrogen synthesis (g/d) was significantly (p<0.01) higher in CT-1.5 and CT-2 groups relative to CT-0.Total body weight gain (kg) and average daily gain (g) were significantly (linear, p<0.01) higher in CT-1.5 followed by CT-1 and CT-0, respectively. Feed conversion ratio (FCR) by lambs was significantly (linear, p<0.01) better in CT-1.5 followed by CT-2 and CT-0, respectively. Total wool yield (g; g/d) was linearly (p<0.05) higher for CT-1.5 than CT-0. Methane emission was linearly decreased (p<0.05) in CT groups and reduction was highest (p<0.01) in CT-2 followed by CT-1.5 and CT-1. Methane energy (kcal/d) was linearly decreased (p<0.05) in CT groups. Conclusion: The CT supplementation at 1% to 2% of the diet through Ficus infectoria and Psidium guajava LMM significantly improved nitrogen metabolism, growth performance, wool yield, FCR and reduced methane emission by lambs.

Influence of Carrier Trap in InAs/GaAs Quantum-Dot Solar Cells (InAs/GaAs 양자점 태양전지에서 전하트랩의 영향)

  • Han, Im Sik;Kim, Jong Su;Park, Dong Woo;Kim, Jin Soo;Noh, Sam Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • In order to investigate an influence of carrier trap by quantum dots (QDs) on the solar parameters, in this study, the $p^+-QD-n/n^+$ solar cells with InAs/GaAs QD active layers are fabricated, and their characteristics are investigated and compared with those of a GaAs matrix solar cell (MSC). Two different types of QD structures, the Stranski-Krastanow (SK) QD and the quasi-monolayer (QML) QD, have been introduced for the QD solar cells, and the parameters (open-circuit voltage ($V_{OC}$), short-cirucuit current ($I_{SC}$), fill factor (FF), conversion efficiency (CE)) are determined from the current-voltage characteristic curves under a standard solar illumination (AM1.5). In SK-QSC, while FF of 80.0% is similar to that of MSC (80.3%), $V_{OC}$ and $J_{SC}$ are reduced by 0.03 V and $2.6mA/cm^2$, respectively. CE is lowered by 2.6% as results of reduced $V_{OC}$ and $J_{SC}$, which is due to a carrier trap into QDs. Though another alternative structure of QML-QD to be expected to relieve the carrier trap have been firstly tried for QSC in this study, it shows negative results contrary to our expectations.