DOI QR코드

DOI QR Code

InAs/GaAs 양자점 태양전지에서 전하트랩의 영향

Influence of Carrier Trap in InAs/GaAs Quantum-Dot Solar Cells

  • 한임식 (영남대학교 물리학과) ;
  • 김종수 (영남대학교 물리학과) ;
  • 박동우 (전북대학교 신소재공학부) ;
  • 김진수 (전북대학교 신소재공학부) ;
  • 노삼규 (한국표준과학연구원 나노소재평가센터)
  • Han, Im Sik (Department of Physics, Yeungnam University) ;
  • Kim, Jong Su (Department of Physics, Yeungnam University) ;
  • Park, Dong Woo (Faculty of New Materials Engineering, Chonbuk National University) ;
  • Kim, Jin Soo (Faculty of New Materials Engineering, Chonbuk National University) ;
  • Noh, Sam Kyu (Nano Materials Evaluation Center, Korea Research Institute of Standards and Science)
  • 투고 : 2012.11.18
  • 심사 : 2013.01.29
  • 발행 : 2013.01.30

초록

본 연구에서는 양자점(quantum dot, QD)에서의 전하트랩이 태양전지의 특성에 미치는 영향을 조사하기 위하여, GaAs 모체 태양전지(MSC)의 활성층에 InAs/GaAs QD을 삽입한 $p^+-QD-n/n^+$ 태양전지(QSC)를 제작하여 그 특성을 비교 조사하였다. Stranski-Krastanow (SK)와 준단층(quasi-monolayer, QML)의 2종류 QD를 도입하였으며, 표준 태양광(AM1.5)에서 얻은 전류-전압 곡선으로부터 태양전지의 특성인자(개방전압($V_{OC}$), 단락전류($I_{SC}$), 충만도(FF), 변환효율(CE))를 결정하였다. SK-QSC의 FF값은 80.0%로 MSC의 값(80.3%)과 비슷한 반면, $V_{OC}$$J_{SC}$는 각각 0.03 V와 $2.6mA/cm^2$만큼 감소하였다. $V_{OC}$$J_{SC}$ 감소 결과로 CE는 2.6% 저하되었는데, QD에 의한 전하트랩이 주요 원인으로 지적되었다. 전하트랩을 완화시키기 위한 구조로서 QML-QD 기반 태양전지를 본 연구에서 처음 시도하였으나, 예측과는 달리 부정적 결과를 보였다.

In order to investigate an influence of carrier trap by quantum dots (QDs) on the solar parameters, in this study, the $p^+-QD-n/n^+$ solar cells with InAs/GaAs QD active layers are fabricated, and their characteristics are investigated and compared with those of a GaAs matrix solar cell (MSC). Two different types of QD structures, the Stranski-Krastanow (SK) QD and the quasi-monolayer (QML) QD, have been introduced for the QD solar cells, and the parameters (open-circuit voltage ($V_{OC}$), short-cirucuit current ($I_{SC}$), fill factor (FF), conversion efficiency (CE)) are determined from the current-voltage characteristic curves under a standard solar illumination (AM1.5). In SK-QSC, while FF of 80.0% is similar to that of MSC (80.3%), $V_{OC}$ and $J_{SC}$ are reduced by 0.03 V and $2.6mA/cm^2$, respectively. CE is lowered by 2.6% as results of reduced $V_{OC}$ and $J_{SC}$, which is due to a carrier trap into QDs. Though another alternative structure of QML-QD to be expected to relieve the carrier trap have been firstly tried for QSC in this study, it shows negative results contrary to our expectations.

키워드

참고문헌

  1. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).
  2. M A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovolt.: Res. Appl. 18, 144 (2010). https://doi.org/10.1002/pip.974
  3. F. Dimroth and S. Kurtz, MRS Bull. 32, 230 (2007). https://doi.org/10.1557/mrs2007.27
  4. L. Kazmerski, Best Research-Cell Efficiencies (NREL Compilation, Golden, 2011).
  5. S. J. Tark, M. G. Kang, S. Park, J. H. Jang, J. C. Lee, W. M. Kim, J. S. Lee, and D. Kim, Curr. Appl. Phys. 9, 1318 (2009). https://doi.org/10.1016/j.cap.2008.12.015
  6. C. H. Son, K. M. Kim, J. H. Kim, J. Hong, and G. C. Kwon, J. Korean Vac. Soc. 21, 55 (2012). https://doi.org/10.5757/JKVS.2012.21.1.55
  7. Y. H. Ko, D. H. Joo, and J. S. Yu, J. Korean Vac. Soc. 21, 99 (2012). https://doi.org/10.5757/JKVS.2012.21.2.99
  8. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007). https://doi.org/10.1063/1.2734507
  9. A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014 (1997). https://doi.org/10.1103/PhysRevLett.78.5014
  10. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, D. D. Krut, H. Ermer, R. A. Sherif, and N. H. Karam, Adv. Optoelectron. 2007, 1 (2007).
  11. M. Hermle, G. Letay, S. P. Philipps, and A. W. Bett, Prog. Photovolt.: Res. Appl. 16, 409 (2008). https://doi.org/10.1002/pip.824
  12. A. Khan, M. Yamaguchi, and T. Takamoto, Appl. Phys. Lett. 85, 3098 (2004). https://doi.org/10.1063/1.1802371
  13. K.-S. Lee, Y. D. Chung, N. M. Park, D. H. Cho, K. H. Kim, J. Kim, S. J. Kim, Y. Kim, and S. K. Noh, J. Opt. Soc. Korea 14, 321 (2010). https://doi.org/10.3807/JOSK.2010.14.4.321
  14. M.-J. Yang and M. Yamaguchi, Sol. Energ. Mater. Sol. C. 60, 19 (2000). https://doi.org/10.1016/S0927-0248(99)00055-0
  15. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, Nano Lett. 5, 865 (2005). https://doi.org/10.1021/nl0502672
  16. R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Kilmov, Nano Lett. 6, 424 (2006). https://doi.org/10.1021/nl052276g
  17. M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, Nano Lett. 7, 2506 (2007). https://doi.org/10.1021/nl071486l
  18. A. Luque and A. Marti, Phys. Adv. Mater. 22, 160 (2010). https://doi.org/10.1002/adma.200902388
  19. S. P. Bremner, M. Y. Levy, and C. B. Honsberg, Appl. Phys. Lett. 92, 171110 (2008). https://doi.org/10.1063/1.2907493
  20. A. J. Nozik, Physica E 14, 115 (2002). https://doi.org/10.1016/S1386-9477(02)00374-0
  21. A. Luque, A. Marti, and A. J. Nozik, MRS Bull. 32, 236 (2007). https://doi.org/10.1557/mrs2007.28
  22. A. Marti, E. Antolin, E. Canovas, N. Lopez, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, Thin Solid Films 516, 6716 (2008). https://doi.org/10.1016/j.tsf.2007.12.064
  23. K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, Nano Lett. 11, 2311 (2011). https://doi.org/10.1021/nl200543v
  24. Y. Okada, R. Oshima, and A. Takata, J. Appl. Phys. 106, 024306 (2009). https://doi.org/10.1063/1.3176903
  25. S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, Appl. Phys. Lett. 92, 123512 (2008). https://doi.org/10.1063/1.2903699
  26. C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, Appl. Phys. Lett. 98, 163105 (2011). https://doi.org/10.1063/1.3580765
  27. D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 083108 (2010). https://doi.org/10.1063/1.3309411
  28. D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 96, 203507 (2010). https://doi.org/10.1063/1.3427392
  29. K. A. Sablon, J. W. Little, K. A. Olver, Zh. M. Wang, V. G. Dorogan, Yu. I. Mazur, G. J. Salamo, and F. J. Towner, J. Appl. Phys. 108, 074305 (2010). https://doi.org/10.1063/1.3486014
  30. T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, Appl. Phys. Lett. 95, 261106 (2009). https://doi.org/10.1063/1.3277149
  31. C. Y. Ngo, S. F. Yoon, W. K. Loke, T. K. Ng, and S. J. Chua, J. Cryst. Growth 311, 1885 (2009). https://doi.org/10.1016/j.jcrysgro.2008.10.076
  32. J. W. Choe, J. O. Kim, and S. K. Noh, J. Korean Phys. Soc. 60, 51 (2012). https://doi.org/10.3938/jkps.60.51
  33. Y. H. Kim, S. J. Kim, S. K. Noh, Jong S. Kim, and Jin S, Kim, J. Korean Phys. Soc. 60, 1785 (2012). https://doi.org/10.3938/jkps.60.1785
  34. D. R. Lide, Handbook of Chemistry and Physics 87 ed, (CRC Press, London, 1998), p. 4-67.
  35. H. H. Li, J. Phys. Chem. Ref. Data 13, 103 (1984). https://doi.org/10.1063/1.555705
  36. A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, Laser & Photon. Rev. 4, 738 (2010). https://doi.org/10.1002/lpor.200900031
  37. S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, Nature Commun. 2, 286 (2011). https://doi.org/10.1038/ncomms1283