• 제목/요약/키워드: Control Variates

검색결과 11건 처리시간 0.038초

컴퓨터 시뮬레이션을 통한 시스템 파라미터 추정의 효율성 (Simulation Efficiency for Estimation of System Parameters in Computer Simulation)

  • 권치명
    • 대한산업공학회지
    • /
    • 제19권1호
    • /
    • pp.61-71
    • /
    • 1993
  • We focus on a way of combining the Monte Calro methods of antithetic variates and control variates to reduce the variance of the estimator of the mean response in a simulation experiment. Combined Method applies antithetic variates (partially) for driving approiate stochastic model components to reduce the vaiance of estimator and utilizes the correlations between the response and control variates. We obtain the variance of the estimator for the response analytically and compare Combined Method with control variates method. We explore the efficiency of this method in reducing the variance of the estimator through the port operations model. Combined Method shows a better performance in reducing the variance of estimator than methods of antithetic variates and control variates in the range from 6% to 8%. The marginal efficiency gain of this method is modest for the example considered. When the effective set of control variates is small, the marginal efficiency gain may increase. Though these results are from the limited experiments, Combined Method could profitably be applied to large-scale simulation models.

  • PDF

Variance Reduction via Adaptive Control Variates (ACV) (Variance Reductin via Adaptive Control Variates(ACV))

  • Lee, Jae-Yeong
    • 한국시뮬레이션학회논문지
    • /
    • 제5권1호
    • /
    • pp.91-106
    • /
    • 1996
  • Control Variate (CV) is very useful technique for variance reduction in a wide class of queueing network simulations. However, the loss in variance reduction caused by the estimation of the optimum control coefficients is an increasing function of the number of control variables. Therefore, in some situations, it is required to select an optimal set of control variables to maximize the variance reduction . In this paper, we develop the Adaptive Control Variates (ACV) method which selects an optimal set of control variates during the simulation adatively. ACV is useful to maximize the simulation efficiency when we need iterated simulations to find an optimal solution. One such an example is the Simulated Annealing (SA) because, in SA algorithm, we have to repeat in calculating the objective function values at each temperature, The ACV can also be applied to the queueing network optimization problems to find an optimal input parameters (such as service rates) to maximize the throughput rate with a certain cost constraint.

  • PDF

층화추출에 의한 통제변수의 시뮬레이션 성과분석 (Simulation Analysis of Control Variates Method Using Stratified sampling)

  • 권치명;김성연;황성원
    • 한국시뮬레이션학회논문지
    • /
    • 제19권1호
    • /
    • pp.133-141
    • /
    • 2010
  • 본 연구는 층화추출법과 통제변수기법을 시뮬레이션 실험설계에서 동시에 사용하여 파라미터의 추정 효율성을 개선하는 방법을 제안하였다. 시뮬레이션을 수행하는 도중에 수집한 표준화 부가변수를 통제변수기법에 활용하여 파라미터 추정을 위한 반응변수의 오차를 줄이도록 하였으며 통제변수 구성에 사용되지 않은 부가변수를 층화변수로 활용하는 층화추출기법을 적용하여 통제반응변수의 변이성을 추가로 감소하였다. 반응변수와 통제변수 사이의 공분산 관계가 알려진 경우에 두 방법을 동시에 활용하여 파라미터를 추정하는 기법의 시뮬레이션 효율성을 이론적으로 도출하였다. 반응변수와 통제변수 사이의 상관관계 구조가 알려지지 않은 경우 선택된 모형의 시뮬레이션 결과는 제안된 층화 통제 추정기법이 층화추출법이나 통제변수기법을 개별적으로 적용하여 파라미터를 추정하는 것보다 우수한 것으로 나타나고 있다.

분산감소기법을 이용한 파라미터 추정의 효율성 (Efficiency of Estimation for Parameters by Use of Variance Reduction Techniques)

  • 권치명
    • 한국시뮬레이션학회논문지
    • /
    • 제14권3호
    • /
    • pp.129-136
    • /
    • 2005
  • We develop a variance reduction technique applicable in one simulation experiment whose purpose is to estimate the parameters of a first order linear model. This method utilizes the control variates obtained during the course of simulation run under Schruben and Margolin's method (S-M method). The performance of this method is shown to be similar in estimating the main effects, and to be superior to S-M method in estimating the overall mean response in a given model. We consider that a proposed method may yield a better result than S-M method if selected control variates are highly correlated with the response at each design point.

  • PDF

다분포 대형 시뮬레이션 모형에 대한 결합상관방법 (Combined Correlation Methods for Multipopulation Metamodel)

  • 권치명
    • 한국시뮬레이션학회논문지
    • /
    • 제1권1호
    • /
    • pp.1-16
    • /
    • 1992
  • This research develops two variance reduction methods for estimating the parameters of the experimental simulation model having multiple design points based on an approach focusing on reduction of the variances of the mean responses across multiple design points. The first method extends a combined approach of antithetic variates and control variates for a single design point to the multipopulation context with independent streams across the design points. The second method extends the same strategy in conjunction with the Schruben-Margolin method for improving the first method. We illustrate an example for implementing the second method. We expect these two approaches may improve the estimation of the parameters of interest compared with the control variates method.

  • PDF

통제변수를 이용한 PERT 네트워크에서 프로젝트 완료확률의 추정 (Control Variates for Percentile Estimation of Project Completion Time in PERT Network)

  • 권치명
    • 한국시뮬레이션학회논문지
    • /
    • 제9권4호
    • /
    • pp.67-75
    • /
    • 2000
  • Often system analysts are interested in the estimation of percentile for system performance. For instance, in PERT network system, the percentile that the project. Typically the control variate method is used to reduce the variability of mean response using the correlation between the response and the control variates with a little additional cost during the course of simulation. In the same spirit, we apply this method to estimate the percentile of project completion time in PERT system, and evaluate the efficiency of the controlled estimator for its percentile.1 Simulation results indicate that the controlled estimators are more effective in reducing the variances of estimators than the simple estimators, however those tend to a little underestimate the percentiles for some critical values. We need more simulation experiments to examine such a kind of bias problem. We expect this research presents a step forward in the area of variance reduction techniques of stochastic simulation.

  • PDF

Simulation efficiency for estimation of system parameters in computer simulation

  • Kwon, Chimyung
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1992년도 춘계공동학술대회 발표논문 및 초록집; 울산대학교, 울산; 01월 02일 May 1992
    • /
    • pp.127-136
    • /
    • 1992
  • 시뮬레이션 실험에서 시스템 성과에 대한 추정치의 정확도를 개선하기 위한 분산감소기법(Variance Reduction Technique)은 입력영역과 출력영역에 대한 것으로 나누어 볼 수 있다. 본 연구에서는 시스템 성과 추정량이 단일 변량인 경우에, 분산감소기법으로 많이 사용되는 Antithetic Variates방법과 Control Variates방법을 결합하여 응용가능한 시뮬레이션 실험설계기법을 제시하고 이 기법을 선택된 모형에 적용하여 시뮬레이션의 효율성을 분석하였다. 실험결과, 제안된 기법은 기존 방법들보다 추정치의 분산을 5%-8% 더 감소시켰다. 비록 제한된 실험결과이지만 이러한 효과는 대형 시뮬레이션의 경우에 적지 않으리라 기대된다. 특히 효과적인 Control Variates의 수가 적은 경우, 제안된 기법은 매우 효율적이다.

  • PDF

시뮬레이션 실험설계에서 분산감소기법의 응용 (Application of Variance Reduction Techniques in Designed Simulation Experiments)

  • 권치명
    • 한국시뮬레이션학회논문지
    • /
    • 제4권1호
    • /
    • pp.25-36
    • /
    • 1995
  • We develop a variance reduction technique in one simulation experiment whose purpose is to estimate the parameters of a first-order linear model. This method utilizes the control variates obtained during the course of simulation run under Schruben and Margolin's method (S-M method). The performance of this method is shown to be similar in estimating the main effects, and to be superior to S-M method in estimating the overall mean response in the hospital simulation experiment. For the general case, we consider that a proposed method may yield a better result than S-M method if selected control variates are highly correlated with the response at each design point.

  • PDF

통제변수 기반 Gradient를 이용한 확률적 최적화 기법 (Stochastic Optimization Method Using Gradient Based on Control Variates)

  • 권치명;김성연
    • 한국시뮬레이션학회논문지
    • /
    • 제18권2호
    • /
    • pp.49-55
    • /
    • 2009
  • 본 연구는 확률적 시스템에서 관심 성과함수의 기대치의 최적을 유도하는 서비스 자원의 최적 배분 문제를 조사하였다. 이러한 목적으로 통제변수를 활용하여 성과함수 기대치에 대한 서비스 자원 파라미터의 gradient를 구하는 방법을 제안하고 이를 최적화 기법의 탐색과정에 적용하여 가용 자원의 최적 배분 문제를 분석하였다. 제안된 gradient 추정 방법은 시뮬레이션 실험에서 입력 파라미터의 차원이 증가하더라도 추가로 표본점의 수를 증가시킬 필요가 없이 단일점에서 시뮬레이션 반응 결과만을 활용하고 또한 시뮬레이션의 발전과정에서 성과함수와 입력 파라미터 사이의 논리적인 관계를 기술할 필요가 없어 적용하기에 편리하다고 볼 수 있다. 본 연구의 결과를 다 차원 파라미터 공간으로의 확장하는 문제와 다양한 형태의 시뮬레이션 모형으로 적용 문제는 향후 연구해야 할 과제로 생각된다.

분산감소기법을 이용한 파라미터 추정의 효율성 (Efficiency of Estimation for Parameters by Use of Variance Reduction Techniques)

  • 황성원;권치명;김성연
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 춘계학술대회 논문집
    • /
    • pp.45-49
    • /
    • 2005
  • 본 연구는 시뮬레이션 반응변수가 입력 인자의 선형 1차식으로 표현된 경우에 인자의 파라미터를 효과적으로 추정하기위해 사용될 수 있는 분산감소기법을 제안하였다. 이 기법은 하나의 실험설계에 공통난수와 대조난수를 동시에 사용하는 Schruben과 Margolin의 방법과 시뮬레이션하는 도중에 얻어지는 통제변수를 활용하는 기법을 결합하는 방법으로 시뮬레이션의 효율성을 개선하고자 하였다. 시뮬레이션 결과 제안된 기법은 주어진 모형의 평균 반응치를 추정한 데는 S-M 기법보다 효과적이었으며 인자의 다른 파라미터를 추정하는 데는 S-M 기법과 비슷한 성과를 보이고 있다. 만일 시뮬레이션 과정에서 반응변수와 상관성이 높은 통제변수들을 선택할 수 있는 경우에는 제안된 기법이 S-M 기법보다 보다 파라미터 추정에 효과적일 것으로 판단된다.

  • PDF